On the distribution of root numbers in families of elliptic curves

Harald Helfgott, Princeton University

May 09, 2003

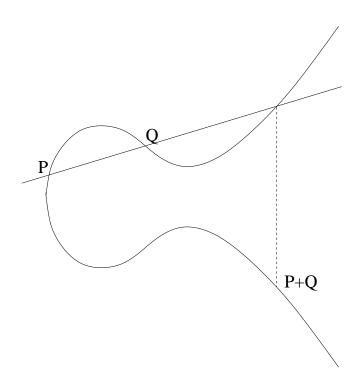
Elliptic curve E over \mathbb{Q} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{Q}$, $4a^3 + 27b^2 \neq 0$.

Set of rational points

$$E(\mathbb{Q}) = \{x, y \in \mathbb{Q} : y^2 = x^3 + ax + b\}$$

has a group structure:



 $E(\mathbb{Q})$ is a finitely generated abelian group (Mordell).

L-function associated to E:

$$L(E,s) = \prod_{\substack{p \text{ good} \\ \cdot \\ p \text{ bad}}} (1 - a_p p^{-s} + p^{1-2s})^{-1}$$

where

$$a_p=p-\#$$
 $\#=$ n. of sols. to $y^2\equiv x^3+ax+b \bmod p$.

E is modular (Wiles and BCDT). Hence $L_E(s)$ has analytic continuation and functional equation.

Philosophy: get global properties of object from its L-function

BSD Conjecture: rank $E(\mathbb{Q}) = \operatorname{ord}_{s=1} L(E, s)$

Functional equation:

$$\mathcal{N}_{E}^{(2-s)/2}(2\pi)^{s-2}\Gamma(2-s)L(E,2-s)$$

$$= W(E)\mathcal{N}_{E}^{s/2}(2\pi)^{-s}\Gamma(s)L(E,s).$$

The root number W_E is 1 or -1.

$$\operatorname{ord}_{s=1} L_E(s) = \begin{cases} \operatorname{even} & \text{if } W(E) = 1 \\ \operatorname{odd} & \text{if } W(E) = -1. \end{cases}$$

In particular, $E(\mathbb{Q})$ infinite if $W_E = -1$.

Family \mathcal{E} of elliptic curves:

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{Q}(t)$, $4a^3 + 27b^2 \neq 0$.

For almost all t, $\mathcal{E}(t)$ is an elliptic curve.

Distribution of rank $\mathcal{E}(t)$: hard, even conditionally

But:

$$\operatorname{av\,rank} \mathcal{E}(t) \geq \operatorname{rank} \mathcal{E} + \frac{1 - \operatorname{av} W(\mathcal{E}(t))}{2}$$

(Likely to be an equality)

What is known about av $W(\mathcal{E}(t))$?

Vox populi: av $W(\mathcal{E}(t)) = 0$

Actually:

- 1. If \mathcal{E} constant, av $W(\mathcal{E})(t)$ anything (Rohrlich, Rizzo)
- 2. If \mathcal{E} non-constant but (technical condition), av $W(\mathcal{E})(t)$ anything, but infinity of +, (Manduchi)
- 3. General case: not treated so far, believed to be analytically hard

Subject of talk: (3)

Family $\mathcal E$ an elliptic curve over $\mathbb Q(t)$

u a place of $\mathbb{Q}(t)$

Polynomial $P_{\nu}(x,y)$

$$B_{\mathcal{E}}(x,y) = \prod_{
u \ \mathrm{bad}} P_{
u}(x,y)$$
 $M_{\mathcal{E}}(x,y) = \prod_{
u \ \mathrm{multiplicative}} P_{
u}(x,y)$

Conjecture A (general square-free sieve):

If $P \in \mathbb{Z}[x]$ square-free,

$$\#\{-N \le x \le N : \exists p > N^{1/2} \text{ s. t. } p^2 | P(x) \} = o(N).$$

If homogeneous $P \in \mathbb{Z}[x,y]$ square-free,

$$\#\{-N \le x, y \le N : \exists p > N \text{ s. t. } p^2 | P(x,y) \} = o(N^2)$$

Known for deg $P \leq 3$, resp. deg $P \leq 6$

Bounds improved

Conjecture 3 (Chowla)

If $P \in \mathbb{Z}[x]$ not constant times square,

$$\sum_{n\equiv a \bmod m} \lambda(P(n)) = o(N),$$

where $\lambda(p_1^{e_1}\cdots p_m^{e_m})=(-1)^{\sum e_i}$. If $P\in\mathbb{Z}[x,y]$ not constant times square,

$$\sum_{\substack{1 \le x,y \le N \\ (x,y) \in S \cap L}} \lambda(P(x,y)) = o(N^2).$$

Thm.

$$\mathfrak{A}(B_{\mathcal{E}}(x,1)) \& \mathfrak{B}(M_{\mathcal{E}}(x,1))$$
 $\Rightarrow \operatorname{av}_{\mathbb{Z}} W(\mathcal{E}(t)) = 0$

$$\mathfrak{A}(B_{\mathcal{E}}) \& \mathfrak{B}(M_{\mathcal{E}})$$
 $\Rightarrow \operatorname{av}_{\mathbb{Q}} W(\mathcal{E}(t)) = 0$

$$\mathfrak{A}(B_{\mathcal{E}}(x,1))$$
 & $\operatorname{av}_{\mathbb{Z}}W(\mathcal{E}(t))=0$ $\Rightarrow \mathfrak{B}(M_{\mathcal{E}}(x,1))$

$$\mathfrak{A}(B_{\mathcal{E}}) \& \operatorname{av}_{\mathbb{Q}} W(\mathcal{E}(t)) = 0$$

$$\Rightarrow \mathfrak{B}(M_{\mathcal{E}})$$

Thm. Chowla holds for two variables, $\deg P = 3$.

More precisely:

Let $f(x,y) \in \mathbb{Z}[x,y]$ be a homogeneous polynomial of degree 3. Let S be a convex subset of $[-N,N]^2$. Let $L \subset \mathbb{Z}^2$ be a lattice coset of index $[\mathbb{Z}^2:L] \leq (\log N)^A$, where A is an arbitrarily high constant. Then

$$\sum_{(x,y)\in S\cap L}\mu(f(x,y))$$

is at most a constant times

$$\frac{(\log \log N)^5(\log \log \log N)}{\log N} \frac{\operatorname{Area}(S)}{[\mathbb{Z}^2 : L]} + \frac{N^2}{(\log N)^A},$$

where the implied constant depends only on f and on A.

Old error terms for square-free sieve:

$deg_{irr}(P)$	$\delta(P(x))$	$\delta(P(x,y))$
1	\sqrt{N}	1
2	$N^{2/3}$	N
3	$N/(\log N)^{1/2}$	$N^2/\log N$
4		$N^2/\log N$
5		$N^2/\log N$
6		$N^2/(\log N)^{1/2}$

Improved error terms:

$deg_{irr}(P)$		$\delta(P(x,y))$
3	$N/(\log N)^{0.5718}$	$N^{3/2}/\log N$
4		$N^{4/3}(\log N)^A$
5		$N(5+\sqrt{113})/8+\epsilon$

Wanted: upper bound for the total # of int. points of low height on

$$E_d$$
: $dy^2 = f(x)$

canonical height $\widehat{h}(x,y) \sim log|x|$

$$\hat{h}(x,y) \ge \frac{1}{8} \log|d| + C$$

$$\operatorname{rank}(E_d) \leq \omega_K(d) - \omega(d) + C'$$

lattice

can eliminate d outside $(N/(\log N)^A, N/(\log N)^\delta)$; can focus on integer points of height $\sim \log N$

Given int. points P, P' on E_d : $dy^2=f(x)$, d square-free,

$$\hat{h}(P+P') \leq 3 \max(\hat{h}(P), \hat{h}(P')) + C.$$

Hence: integer points of height close to each other are separated by almost 60° (at least)

Sphere packing (kissing number in n dim)

$$\# \le 2^{0.401...\cdot n}$$