8. Generic representations and their Whittaker models.

8.1 General case. Let **G** be a Chevalley group, and $\mathbf{B} = \mathbf{T}\mathbf{U}$ be a Borel subgroup. Let Δ be the simple roots. Then

$$\mathbf{U}/[\mathbf{U},\mathbf{U}] \simeq \prod_{\alpha \in \Delta} U_{\alpha}.$$

First, let F be a local field. Let ψ be a character of $\mathbf{U}(F)$. Then $\psi = \prod_{\alpha \in \Delta} \psi_{\alpha}$, where ψ_{α} is a character of U_{α} .

Definition 8.1. ψ is called generic or non-degenerate if each ψ_{α} is non-trivial.

Note that ψ_{α} is a character of F. Any non-trivial character of F is of the form $x \longmapsto \eta(ax), a \in F^*$, where η is a fixed non-trivial character of F. Hence a generic character ψ can be written as

$$\psi(u) = \eta(\prod_{\alpha \in \Delta} e_{\alpha}(a_i u_i)),$$

where $u \in U$, $a_i \in F^*$, and $u_i \in F$.

Example 8.2. Let $\mathbf{G} = GL_n$. Then

$$\prod_{lpha \in \Delta} U_{lpha} = (egin{pmatrix} 1 & x_{12} & & & & & & \\ & 1 & x_{23} & & & & & \\ & & 1 & & & & & \\ & & & & \cdots & x_{n-1,n} \\ & & & & 1 \end{pmatrix}).$$

A generic character is of the form $\psi(u) = \eta(a_1x_{12} + \cdots + a_{n-1}x_{n-1,n})$, where $a_i \neq 0$ and η is any non-trivial character of F.

Suppose F is global.

Definition 8.3. A character $\psi = \bigotimes_v \psi_v$ of $\mathbf{U}(F) \setminus \mathbf{U}(\mathbb{A})$ is called generic if each ψ_v is generic.

From now on we fix a generic character ψ . Suppose $\pi = \otimes_v \pi_v$ is a cuspidal representation of $\mathbf{G}(\mathbb{A})$, and φ is a cuspidal function in the space of π . Let

$$W_{\varphi}(g) = \int_{\mathbf{U}(F)\backslash\mathbf{U}(\mathbb{A})} \varphi(ug) \overline{\psi(u)} \, du,$$

for $g \in \mathbf{G}(\mathbb{A})$. W_{φ} is called the Whittaker function attached to φ , and the space $\{W_{\varphi}\}$ is called the Whittaker model of π : W_{φ} satisfies the relation, $W_{\varphi}(ug) = \psi(u)W_{\varphi}(g)$.

Definition 8.4. π is called globally ψ -generic if $W_{\varphi} \neq 0$ for some φ .

Theorem 8.5 (Piatetski-Shapiro, Shalika). Any cuspidal representation of GL_n is globally generic.

Conjecture (generalization of Ramanujan conjecture). Suppose $\pi = \otimes_v \pi_v$ is a globally generic cuspidal representation of $\mathbf{G}(\mathbb{A})$. Then each π_v is tempered.

Let F be a local field, and ψ be a generic character of $U = \mathbf{U}(F)$.

Definition 8.6. An irreducible representation (σ, V) is called ψ -generic if there exists a functional $\lambda: V \longrightarrow \mathbb{C}$ such that $\lambda(\sigma(u)\xi) = \psi(u)\lambda(\xi)$ for $u \in U, \xi \in V$. A non-zero such λ is called a Whittaker functional.

If F is archimedean, we require λ to be continuous with respect to semi-norm topology defined by elements of universal enveloping algebra of the Lie algebra of \mathbf{G} , or more simply by right invariant differential operator on \mathfrak{g} . Note that by definition, a character $\chi: F^* \longrightarrow \mathbb{C}$ is not generic. More generally, if \mathbf{G} is not quasi-split, any representation of $\mathbf{G}(F)$ is not generic.

Theorem 8.7 (Gelfand-Kazhdan, Rodier, Shalika). The dimension of the space of Whittaker functionals for σ is at most 1.

Given a Whittaker functional λ for (σ, V) , we define a Whittaker function W_{ξ} for each $\xi \in V$ by

$$W_{\xi}(g) = \lambda(\sigma(g)\xi).$$

 W_{ξ} satisfies the relation, $W_{\xi}(ug) = \psi(u)W_{\xi}(g)$ for $u \in U$.

Let $W = \{W_{\xi} : \xi \in V\}$; we call it the Whittaker model for σ . Let (ρ, W) be the right translation, namely, $\rho(g)W_{\xi}(h) = W_{\xi}(hg)$. Then $W_{\sigma(g)\xi} = \rho(g)W_{\xi}$, and we see that $(\rho, W) \simeq (\sigma, V)$.

Conversely, if W is given, and we have a map $V \longrightarrow W$; $\xi \longmapsto W_{\xi}$, we can define a Whittaker functional λ by $\lambda(\xi) = W_{\xi}(1)$. Thus specifying a Whittaker functional is equivalent to specifying a Whittaker model.

Theorem 8.8. (1) Let $\pi = \otimes_v \pi_v$ be a globally ψ -generic cuspidal representation of $\mathbf{G}(\mathbb{A})$, where $\psi = \otimes_v \psi_v$ is a fixed generic character. Then each π_v is ψ_v -generic. (2) If $\varphi = \otimes_v \varphi_v$, where φ_v is a spherical vector for almost all v, then $W_{\varphi} = \otimes_v W_{\varphi_v}$, where $W_{\varphi_v}(k_v) = 1$ for almost all v, $k_v \in \mathbf{G}(\mathcal{O}_v)$.

Note that the converse is not true. Namely, it can happen that each π_v is ψ_v generic, and hence $\pi = \otimes_v \pi_v$ has a global Whittaker model, but π is not globally
generic. There is an example of cuspidal representations of $\overline{SL_2(\mathbb{A})}$ due to GelbartSoudry. Kudla-Rallis-Soudry showed that in order that a cuspidal representation π of Sp(4) be globally generic, one needs non-vanishing of the L-function $L(s,\pi)$ at s=1.

Proof. Pick $\varphi^0 = \otimes_v \varphi_v^0$ such that $W_{\varphi^0}(e) = 1$. For each v, define $W_{\varphi_v}(g_v) = W_{i_v(\varphi_v)}(g_v)$ for $\varphi_v \in V_v$, where $i_v(\varphi_v) = \varphi_v \otimes \otimes_{w \neq v} \varphi_w^0$. Then W_{φ_v} is a Whittaker model for π_v , and $W_{\varphi} = \otimes_v W_{\varphi_v}$.

8.2 Whittaker models for induced representations. For the applications to L-functions, we need to consider Whittaker models for induced representations.

Suppose F is local. Let $\mathbf{P} = P_{\theta} = \mathbf{MN}$, $\theta \subset \Delta$. Let ψ_M be a generic character of $U_M = \mathbf{U}_M(F)$, where $\mathbf{U}_M = \mathbf{U} \cap \mathbf{M}$. Let ψ be a generic character of U such that $\psi|_{U_M} = \psi_M$.

Let (σ, V) be a ψ_M -generic representation of M, with λ_M being the ψ_M -Whittaker functional. Let $w_0 \in W$ be such that $w_0(\theta) \subset \Delta$, $w_0(\alpha) < 0$ for every α in \mathbb{N} . We choose w_0 so that ψ and w_0 are compatible. Let $\mathbb{P}' = \mathbb{M}'\mathbb{N}' = P_{w_0(\theta)}$. Let $I(\nu, \sigma)$ be the induced representation for $v \in \mathfrak{a}_{\mathbb{C}}^*$ with the representation space $V(\nu, \sigma)$. For every $f \in V(\nu, \sigma)$, define

$$\lambda_{\psi}(f) = \int_{N'} \overline{\psi(n')} \lambda_M(f(w_0^{-1}n')) dn'.$$

Proposition 8.9 (Casselman-Shalika, Shahidi). λ is ψ -Whittaker functional for $I(\nu, \sigma)$, i.e., $I(\nu, \sigma)$ is ψ -generic. Moreover, as a function of ν , $\lambda_{\psi}(\nu, \sigma)$ is holomorphic for all ν .

Proof. We need to prove

$$\lambda_{\psi}(\nu, \sigma)(I(\nu, \sigma)(u)f) = \psi(u)\lambda_{\psi}(\nu, \sigma)(f).$$

Since $(I(\nu, \sigma)(u))f(h) = f(hu)$,

$$\lambda_{\psi}(\nu,\sigma)(I(\nu,\sigma)(u)f) = \int_{N'} \overline{\psi(n')} \lambda_{M}(f(w_{0}^{-1}n'u)) dn'$$

Since $U = N' \cdot U_{M'}$, let $u = n'' \cdot u'$. By change of variables n'n'' = n, we see

$$\int_{N'} \overline{\psi(n')} \lambda_M(f(w_0^{-1} n' n'' u)) \, dn' = \int_{N'} \psi(n'') \overline{\psi(n)} \lambda_M(f(w_0^{-1} n u)) \, dn.$$

Note that $nu' = u' \cdot u'^{-1} nu'$. Again use the change of variables $n \mapsto u'^{-1} nu'$. The right hand side is $\int_{N'} \psi(n'') \overline{\psi(n)} \lambda_M(f(w_0^{-1}u'n)) dn$. Here $f(w_0^{-1}u'n) = f(w_0^{-1}n'w_0 \cdot w_0^{-1}n)$, and $w_0^{-1}u'w_0 \in U_M$. By the property of induced representation, $f(w_0^{-1}n'w_0 \cdot w_0^{-1}n) = \sigma(w_0^{-1}u'w_0)f(w_0^{-1}n)$. By the property of Whittaker functional, $\lambda_M(\sigma(w_0^{-1}u'w_0)f(w_0^{-1}n)) = \psi(w_0^{-1}u'w_0)f(w_0^{-1}n)$. Here by the compatibility of ψ and w_0 , $\psi(w_0^{-1}u'w_0) = \psi(u')$. Hence $\lambda_M(\sigma(w_0^{-1}u'w_0)f(w_0^{-1}n)) = \psi(u')f(w_0^{-1}n)$. Therefore,

$$\lambda_{\psi}(\nu,\sigma)(I(\nu,\sigma)(u)f) = \overline{\psi(n'')\psi(u')} \int_{N'} \overline{\psi(n')} \lambda_{M}(f(w_{0}^{-1}n')) dn' = \psi(u)\lambda_{\psi}(\nu,\sigma)f.$$

The Whittaker function is

$$W_f(g) = \lambda_{\psi}(\nu, \sigma)(I(\nu, \sigma)(g)f) = \int_{N'} \overline{\psi(n')} \lambda_M(f(w_0^{-1}n'g)) dn',$$

by noting that $(I(\nu, \sigma)(g))f(h) = f(hg)$. Especially, if $\mathbf{P} = \mathbf{B}$ is a Borel subgroup, then

$$W_f(g) = \int_U \overline{\psi(u)} f(w_l^{-1} u g) du,$$

where w_l is the longest Weyl group element in W.

Let us express $W_f(g)$ in terms of the Whittaker function of σ : Let $w_0^{-1}n'g = mnk$, where $m \in M, n \in N, k \in K$. Then $f(w_0^{-1}n'g) = \sigma(m)exp(\langle \nu + \rho_P, H_P(m) \rangle)f(k)$. For $\xi \in V$, let W_{ξ} be the Whittaker function of σ . Then $W_{\xi}(m) = \lambda_M(\sigma(m)\xi)$. Hence $\lambda_M(f(w_0^{-1}n'g) = \lambda_M(\sigma(m)exp(\langle \nu + \rho_P, H_P(m) \rangle)f(k)) = W_{exp(\langle \nu + \rho_P, H_P(m) \rangle)f(k)}(m)$. By abuse of notation, we denote $W_{exp(\langle \nu + \rho_P, H_P(m) \rangle)f(k)}(m)$ by $W_{\sigma}(w_0^{-1}n'g)$. Therefore,

(8.1)
$$W_f(g) = \int_{N'} \overline{\psi(n')} W_{\sigma}(w_0^{-1} n'g)) dn'.$$

Now we compute the Whittaker function in the case of SL_2 . Let $G = SL_2(\mathbb{Q}_p)$ and χ is a character of \mathbb{Q}_p^{\times} . Let ψ be an unramified character of \mathbb{Q}_p , i.e., \mathbb{Z}_p is the largest ideal of \mathbb{Q}_p on which ψ is trivial. Let f_p^0 be the spherical function in $I(s,\chi)$ such that $f_p^0(e) = 1$. It is the unique $SL_2(\mathbb{Z}_p)$ -fixed function satisfying $f_p^0\left(\begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix}g\right) = \chi(a)|a|^{s+1}f_p^0(g)$. Let $N_p = \{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\}$, and $w_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Theorem 8.10.

$$W_{f_p^0}(e) = \int_{N_p} f_p^0(w_0^{-1}n) \overline{\psi(n)} \, dn = L(s+1,\chi)^{-1}.$$

Proof. Note that for $n = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$,

$$w_0^{-1}n = \begin{pmatrix} 0 & -1 \\ 1 & x \end{pmatrix} = \begin{pmatrix} x^{-1} & 0 \\ 0 & x \end{pmatrix} \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x^{-1} & 1 \end{pmatrix}.$$

If $x \in \mathbb{Z}_p$, $f_p^0(w_0^{-1}n) = 1$. If $x = p^{-m}u$ with $m \ge 1$, then $f_p^0(w_0^{-1}n) = \chi(p^m)(p^{-m})^{s+1}$. Therefore,

$$W_{f_p^0}(e) = \int_{\mathbb{Z}_p} f_p^0(w_0^{-1}n) \overline{\psi(n)} \, dx + \sum_{m=1}^{\infty} \int_{p^{-m}\mathbb{Z}_p^{\times}} f_p^0(w_0^{-1}n) \overline{\psi(n)} \, dx.$$

Here

$$\int_{p^{-m}\mathbb{Z}_p^{\times}} f_p^0(w_0^{-1}n) \overline{\psi(n)} \, dx = \chi(p)^m (p^{-m})^{s+1} \int_{p^{-m}\mathbb{Z}_p^{\times}} \overline{\psi(n)} \, dx.$$

Since ψ is not trivial on $p^{-m}\mathbb{Z}_p$ for $m \geq 1$, and $p^{-m}\mathbb{Z}_p^{\times} = p^{-m}\mathbb{Z}_p - p^{-(m-1)}\mathbb{Z}_p$, we have

$$\int_{p^{-m}\mathbb{Z}_{p}^{\times}} \overline{\psi(n)} \, dx = \int_{p^{-m}\mathbb{Z}_{p}} \overline{\psi(n)} \, dx - \int_{p^{-(m-1)}\mathbb{Z}_{p}} \overline{\psi(n)} \, dx = \begin{cases} 0, & \text{if } m > 1 \\ -1, & \text{if } m = 1. \end{cases}$$

Therefore, $W_{f_n^0}(e) = 1 - \chi(p)p^{-s-1} = L(s+1,\chi)^{-1}$.

More generally over an arbitrary algebraic number field, we can show

$$W_{f_v^0}(e) = \int_{F_v} f_v^0(w_0^{-1}n) \overline{\psi(n)} \, dn = L(s+1, \chi_v)^{-1},$$

for $f_v^0 \in I(s, \chi_v)$.

Now let π_v be a spherical representation with the inducing character χ_v , and f_v^0 be a K_v -fixed vector in $I(s,\pi_v) \subset I(s\tilde{\alpha},\chi_v)$ such that $f_v^0(e) = 1$. Here it is important to remember that in (8.1), we need to choose the Whittaker function $W_{exp(\langle \nu+\rho_P,H_P(m)\rangle)f(k)}(m)$ so that $W_{f_v^0(e)}(e) = 1$ according to Theorem 8.8.¹ Hence $W_{\pi_v}(g) = c \int_{U_M} \overline{\psi(u)} f_v^0(w_{l,\theta}^{-1} ug) du$ for a constant c, where $w_{l,\theta}$ is the longest Weyl group element in W_θ such that $w_l = w_0 w_{l,\theta}$. Then (8.1) becomes

$$W_{f_v^0}(e) = c \int_U \overline{\psi(u)} f_v^0(w_l^{-1} ug) du.$$

We can verify it in the following way: Note that $U = N' \cdot U_{M'}$, and $w_{l,\theta} = w_{l,\theta}^{-1}$. Then

$$W_{f_v^0}(e) = c \int_{N'} \overline{\psi(n)} \int_{U_{M'}} \overline{\psi(u)} f_v^0(w_{l,\theta}^{-1}(w_0^{-1}nu)) \ du dn.$$

Here $w_0^{-1}nu = (w_0^{-1}uw_0)w_0^{-1}u^{-1}nu$ and $w_0^{-1}uw_0 \in U_M$ for $u \in U_{M'}$. So by changing the variables $n \mapsto unu^{-1}$,

$$W_{f_v^0}(e) = c \int_{N'} \overline{\psi(n)} W_{\pi_v}(w_0^{-1}n) dn.$$

Casselman-Shalika have shown that

$$\int_{U} \overline{\psi(u)} f_{v}^{0}(w_{l}^{-1}ug) du = \prod_{\beta>0} L(1 + s\langle \tilde{\alpha}, \beta \rangle, \chi_{v} \circ \beta^{\vee})^{-1},$$

$$\int_{U_{M}} \overline{\psi(u)} f_{v}^{0}(w_{l,\theta}^{-1}ug) du = \prod_{\beta \in \Sigma_{\theta}^{+}} L(1 + s\langle \tilde{\alpha}, \beta \rangle, \chi_{v} \circ \beta^{\vee})^{-1}.$$

Since $\langle \tilde{\alpha}, \beta \rangle = 0$ for $\beta \in \Sigma_{\theta}^+$, the second integral is a constant. Now we can choose c such that $W_{\pi_v}(e) = 1$. Then

Theorem 8.11 (Casselman-Shalika).

$$W_{f_v^0}(e) = \prod_{\beta \in \Phi^+ - \Sigma_\theta^+} L(1 + s\langle \tilde{\alpha}, \beta \rangle, \chi_v \circ \beta^{\vee})^{-1} = \prod_{i=1}^m L(1 + is, \pi_v, r_i)^{-1}.$$

¹Thanks are due to Prof. F. Shahidi who pointed this out