9. Local coefficients and non-constant terms.

9.1 Non-constant terms of Eisenstein series. Let $\mathbf{P} = \mathbf{M}\mathbf{N}$ be a maximal parabolic subgroup and ψ_M be a generic character of $\mathbf{U}_M(F)\backslash \mathbf{U}_M(\mathbb{A})$, where $\mathbf{U}_M = \mathbf{U}\cap \mathbf{M}$. Let ψ be a generic character of $\mathbf{U}(F)\backslash \mathbf{U}(\mathbb{A})$ such that $\psi|_{\mathbf{U}_M(\mathbb{A})} = \psi_M$. Let π be globally ψ_M -generic. Recall the Eisenstein series

$$E(s, \pi, f_s, g) = \sum_{\gamma \in \mathbf{P}(F) \setminus \mathbf{G}(F)} f_s(\gamma g),$$

for $f_s \in I(s, \pi)$.

Definition 9.1.

$$E_{\psi}(s, \pi, f_s, g) = \int_{\mathbf{U}(F)\backslash\mathbf{U}(\mathbb{A})} E(s, \pi, f_s, ug) \overline{\psi(u)} \, du,$$

is called ψ -th Fourier coefficient (or non-constant term) of $E(s, \pi, f_s, g)$.

Proposition 9.2. Suppose $f_s = \bigotimes_v f_{s,v}$, where $f_{s,v} = f_v^0$ for $v \notin S$, where S is a finite set of places, including archimedean places, and π_v, ψ_v are unramified for $v \notin S$. Then, for $g = \bigotimes g_v$,

$$E_{\psi}(s,\pi,f_{s},g) = \prod_{v} W_{f_{s,v}}(g_{v}), \quad E_{\psi}(s,\pi,f_{s},e) = \prod_{v \in S} W_{f_{s,v}}(e) \prod_{i=1}^{m} L_{S}(1+is,\pi,r_{i})^{-1}.$$

Proof. We use Bruhat decomposition in the proof of Theorem 5.3:

$$\mathbf{G}(F) = \bigcup_{w \in W_{\theta} \setminus W/W_{w_{0}(\theta)}} \mathbf{P}(F)w^{-1}\mathbf{P}'(F).$$

where $\mathbf{P}' = P_{w_0(\theta)} = \mathbf{M}'\mathbf{N}'$. Here if $w = w_0$, then $\mathbf{P}(F)w^{-1}\mathbf{P}'(F) = \mathbf{P}(F)w_0^{-1}\mathbf{N}'(F)$. Let $\mathbf{N}_1 = w\mathbf{N}w^{-1} \cap \mathbf{N}'$. So

$$E_{\psi}(s,\pi,f_s,g) = \sum_{w \in W(\theta,w_0(\theta))} \sum_{n' \in \mathbf{N}_1(F) \setminus \mathbf{N}'(F)} \int_{\mathbf{U}(F) \setminus \mathbf{U}(\mathbb{A})} f_s(w^{-1}n'ug)) \overline{\psi(u)} \, du.$$

Note that $\mathbf{U} = \mathbf{N}' \cdot \mathbf{U}_{M'}$. So

$$\begin{split} E_{\psi}(s,\pi,f_{s},g) &= \sum_{w \in W(\theta,w_{0}(\theta))} \sum_{n' \in \mathbf{N}_{1}(F) \backslash \mathbf{N}'(F)} \int_{\mathbf{U}_{M'}(F) \backslash \mathbf{U}_{M'}(\mathbb{A})} \int_{\mathbf{N}'(F) \backslash \mathbf{N}'(\mathbb{A})} \overline{\psi(n''u)} f_{s}(w^{-1}n'n''ug) \, dn''du \\ &= \sum_{w \in W(\theta,w_{0}(\theta))} \int_{\mathbf{U}_{M'}(F) \backslash \mathbf{U}_{M'}(\mathbb{A})} \overline{\psi(u)} \int_{\mathbf{N}_{1}(F) \backslash \mathbf{N}'(\mathbb{A})} \overline{\psi(n)} f_{s}(w^{-1}nug) \, dndu. \end{split}$$

Here we use the fact that $\psi|_{U(F)} = 1$. If $w^{-1}\mathbf{N}'w \cap \mathbf{M} \neq 1$, we can see that $w\mathbf{M}w^{-1} \cap \mathbf{N}'$ is a product of unipotent groups attached to non-simple positive roots. (They are generated by positive roots $\alpha \in \Phi_+ - \Sigma_{w_0(\theta)}^+$ such that $\alpha = w(\beta)$ for $\beta \in \Sigma_{\theta}^+$. Since $w^{-1}(w_0(\theta)) > 0$, α cannot be simple. If α were simple, then $w^{-1}(\Delta) > 0$. contradiction.) Hence if $n \in (w\mathbf{M}w^{-1} \cap \mathbf{N}')(\mathbb{A})$, $\psi(n) = 1$. By the cuspidalidty of π , we see that

$$\int_{\mathbf{N}_1(F)\backslash\mathbf{N}'(\mathbb{A})} \overline{\psi(n)} f_s(w^{-1} n u g) dn = 0.$$

If $w^{-1}\mathbf{N}'w\cap\mathbf{M}=1$, then only w=1 and w_0 can contribute. If w=1 (it can occur only when \mathbf{P} is self-conjugate), we need to calculate

$$\int_{\mathbf{U}(F)\setminus\mathbf{U}(\mathbb{A})} f_s(ug)) \overline{\psi(u)} \, du.$$

Let $\mathbf{U} = \mathbf{N} \cdot \mathbf{U}_M$. Then the above integral is

$$\int_{\mathbf{U}_M(F)\setminus\mathbf{U}_M(\mathbb{A})}\int_{\mathbf{N}(F)\setminus\mathbf{N}(\mathbb{A})}\overline{\psi(nu)}f_s(nug)\,dndu.$$

Here f_s is a function on $\mathbf{N}(\mathbb{A})\mathbf{M}(F)\backslash\mathbf{G}(\mathbb{A})$, and hence $f_s(nug)=f_s(ug)$. Therefore, the above integral is

$$\int_{\mathbf{U}_M(F)\backslash\mathbf{U}_M(\mathbb{A})} \overline{\psi(u)} f_s(ug) \int_{\mathbf{N}(F)\backslash\mathbf{N}(\mathbb{A})} \overline{\psi(n)} \, dn du.$$

Since ψ is non-trivial on $\mathbf{N}(\mathbb{A})$, $\int_{\mathbf{N}(F)\setminus\mathbf{N}(\mathbb{A})} \overline{\psi(n)} \, dn = 0$.

Hence only $w = w_0$ contributes. So

$$E_{\psi}(s,\pi,f_s,g) = \int_{\mathbf{N}'(\mathbb{A})} \overline{\psi(n)} \left(\int_{\mathbf{U}_{M'}(F) \setminus \mathbf{U}_{M'}(\mathbb{A})} f_s(w_0^{-1} nug) \overline{\psi(u)} \, du \right) dn.$$

Here $w_0^{-1}nu = w_0^{-1}uw_0w_0^{-1}u^{-1}nu$ and $w_0^{-1}uw_0 \in \mathbf{U}_M$ if $u \in \mathbf{U}_M'$. By the change of variables, $n \longmapsto unu^{-1}$ and noting that $\psi(w_0^{-1}uw_0) = \psi(u)$ by the compatibility of ψ and w_0 ,

$$E_{\psi}(s,\pi,f_s,g) = \int_{\mathbf{N}'(\mathbb{A})} \overline{\psi(n)} \left(\int_{\mathbf{U}_M(F) \setminus \mathbf{U}_M(\mathbb{A})} f_s(uw_0^{-1}ng) \overline{\psi(u)} \, du \right) dn.$$

Let $w_0^{-1}ng = n_1mk$, where $n_1 \in \mathbf{N}(\mathbb{A}), m \in \mathbf{M}(\mathbb{A}), k \in K$. Then $f_s(uw_0^{-1}ng) = f_s(umk)$. Here for $k \in K$, the function $f_{s,k} : m \longmapsto f_s(mk)$ belongs to the space $\pi \otimes exp(\langle s\tilde{\alpha} + \rho_P, H_P() \rangle)$. Hence

$$\int_{\mathbf{U}_M(F)\backslash\mathbf{U}_M(\mathbb{A})} f_s(uw_0^{-1}ng)\overline{\psi(u)}\,du = W_{f_{s,k}}(m),$$

the Whittaker function of $f_{s,k}$. By abuse of notation, we denote $W_{f_{s,k}}(m)$ by $W_{\pi}(w_0^{-1}ng)$. Then

$$E_{\psi}(s,\pi,f_s,g) = \int_{\mathbf{N}'(\mathbb{A})} \overline{\psi(n)} W_{\pi}(w_0^{-1} ng) dn.$$

We write $W_{\pi} = \otimes_{v} W_{\pi_{v}}$, and

$$E_{\psi}(s, \pi, f_s, g) = \prod_{v} \int_{\mathbf{N}'(F_v)} \overline{\psi(n)} W_{\pi_v}(w_0^{-1} ng) dn.$$

Here $W_{f_{s,v}}(g) = \int_{\mathbf{N}'(F_v)} \overline{\psi(n)} W_{\pi_v}(w_0^{-1} ng) dn$. Hence

$$E_{\psi}(s, \pi, f_s, g) = \prod_{v} W_{f_{s,v}}(g_v).$$

By Theorem 8.11, for $v \notin S$, $W_{f_{s,v}}(e) = \prod_{i=1}^{m} L(1+is, \pi_v, r_i)^{-1}$. Hence

$$E_{\psi}(s, \pi, f_s, e) = \prod_{v \in S} W_{f_{s,v}}(e) \prod_{i=1}^{m} L_S(1 + is, \pi, r_i)^{-1}.$$

Corollary 9.3. $\prod_{i=1}^{m} L_S(1+is,\pi,r_i)$ has no zeros for Re(s)=0. Especially, if π_1,π_2 are cuspidal representations of GL_k,GL_l , resp., then $L_S(s,\pi_1\times\pi_2)$ has no zeros for Re(s)=1.

Proof. Just note that $E(s, \pi, f_s, e)$ is holomorphic for Re(s) = 0, and given s, we can find $f_{s,v}$ such that $W_{f_{s,v}}(e) \neq 0$ (See Lemma 9.4). For the second assertion, consider the case $GL_k \times GL_l \subset GL_{k+l}$.

More generally, by Corollary 5.5, if **P** is not self-conjugate or $w_0(\pi) \not\simeq \pi$, $M(s,\pi)$ is holomorphic for $Re(s) \geq 0$, and hence $E(s,\pi,f_s,e)$ is holomorphic for $Re(s) \geq 0$. First, we need

Lemma 9.4. (1) If $v < \infty$, there exists $f_{s,v}$ such that $W_{f_{s,v}}(e)$ is a non-zero constant (independent of s).

(2) If $v|\infty$, $W_{f_{s,v}}(e)$ is entire and of finite order for $Re(s) \geq 0$. Given s, we can choose $f_{s,v}$ such that $W_{f_{s,v}}(e) \neq 0$. But given $f_{s,v}$, $W_{f_{s,v}}(e)$ can have zeros for $Re(s) \geq 0$.

Therefore, we have

Corollary 9.5. If P is not self-conjugate or $w_0(\pi) \not\simeq \pi$, $\prod_{i=1}^m L_S(1+is,\pi,r_i)$ has no zeros for $Re(s) \geq 0$.

In the next two examples, let $F = \mathbb{Q}$. There exists a standard character ψ_0 on $\mathbb{Q}\backslash\mathbb{A}$, namely, $\psi_0 = \otimes \psi_{0p}$, where $\psi_{0\infty}(x) = e^{-2\pi i x}$ for $x \in \mathbb{R}$, and $\psi_{0p}(x) = e^{2\pi i r}$, where $r \in \mathbb{Q}$ and $x - r \in \mathbb{Z}_p$. Such r is uniquely determined up to \mathbb{Z} . This ψ_0 has

the property that the conductor of ψ_{0p} is \mathbb{Z}_p for each p. Then all other characters of $\mathbb{Q}\backslash\mathbb{A}$ is of the form ψ_a for $a\in\mathbb{Q}$, where $\psi_a(x)=\psi_0(ax)$. Hence for $r\in\mathbb{Q}$,

$$\prod_{p < \infty} \int_{\mathbb{Z}_p} \psi_{0p}(rx_p) \, dx_p = \begin{cases} 1, & r \in \mathbb{Z} \\ 0, & \text{otherwise.} \end{cases}$$

We know that the fundamental domain for $\mathbb{Q}\backslash\mathbb{A}$ is $\mathbb{R}/\mathbb{Z}+\hat{\mathbb{Z}}$, where $\hat{\mathbb{Z}}=\prod_p'\mathbb{Z}_p$. If f is a function on \mathbb{R}/\mathbb{Z} with a Fourier series expansion $f(x)=\sum_{n\in\mathbb{Z}}a_ne^{2\pi inx}$, then we can think of f as a function on $\mathbb{Q}\backslash\mathbb{A}$ which is right $\hat{\mathbb{Z}}$ -invariant. Then, for $r\in\mathbb{Q}$,

$$\int_{\mathbb{Q}\setminus\mathbb{A}} f(x)\psi_0(-rx)\,dx = \int_{\mathbb{R}/\mathbb{Z}} f(x_\infty)e^{2\pi i r x_\infty}\,dx_\infty \prod_{p<\infty} \int_{\mathbb{Z}_p} \psi_{0p}(-rx_p)\,dx_p.$$

Hence if $r \notin \mathbb{Q}$, it is zero. If $r \in \mathbb{Z}$, then $\int_{\mathbb{Q} \setminus \mathbb{A}} f(x) \psi_0(-rx) dx = a_r$.

Example 9.6. This example was done by J. Cogdell in his lecture. Consider the automorphic form ϕ_f attached to a holomorphic modular form $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$ with respect to $SL_2(\mathbb{Z})$. Then ϕ_f is right $K = \prod K_p$ -invariant, where $K_p = GL_2(\mathbb{Z}_p)$ for all p. Since $u \longrightarrow \phi_f(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}g)$ is periodic, we have a Fourier expansion

$$\phi_f(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} g) = \sum_{r \in \mathbb{Q}} W_{\phi_f,r}(g) \psi_0(ru),$$

where

$$W_{\phi_f,r}(g) = \int_{\mathbb{Q}\setminus\mathbb{A}} \phi_f(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} g) \psi_0(-ru) \ du.$$

Then $\phi_f(g) = \sum_{r \in \mathbb{Q}} W_{\phi_f,r}(g)$. Let us compute $W_{\phi_f,r}(g)$ for $g = \begin{pmatrix} y^{\frac{1}{2}} & y^{-\frac{1}{2}}x \\ 0 & y^{-\frac{1}{2}} \end{pmatrix}$. In this case, $g \cdot i = x + yi = z$, and $\phi_f(g) = f(z)$. Then $u \longrightarrow \phi_f(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}g)$ is a function on $\mathbb{Q} \setminus \mathbb{A}$ which is invariant under $\hat{\mathbb{Z}}$. By the above computation, $W_{\phi_f,r}(g) = 0$ unless $r \in \mathbb{Z}$. If $r \in \mathbb{Z}$, then

$$W_{\phi_f,r}(g) = \int_{\mathbb{R}/\mathbb{Z}} f(x + u_{\infty} + yi)e^{2\pi i r u_{\infty}} du_{\infty} = a_r e^{2\pi i z}.$$

So we retrieve the original Fourier expansion.

Example 9.7. Consider E(s,1,g) in Example 5.1. Since $x \longrightarrow E(s,1,\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}g)$ is periodic, we have a Fourier expansion

$$E(s,1,\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}g) = \sum_{r \in \mathbb{O}} c_r(g)\psi_0(ru),$$

where

$$c_r(g) = \int_{\mathbb{Q} \setminus \mathbb{A}} E(s, 1, \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} g) \psi_0(-ru) du.$$

By Bruhat decomposition, we can see that if r = 0, we obtain the constant term. Suppose $r \neq 0$. Then we get

$$c_r(g) = \int_{\mathbb{A}} f(w_0^{-1} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} g) \psi_0(-ru) du,$$

where $f(g) = exp(\langle s\tilde{\alpha} + \rho_P, H_P(g) \rangle)$. This is a non-constant term. First recall how to compute $H_P(g)$ for $g \in SL_2(\mathbb{R})$, $exp(\langle \rho_P, H_P(g) \rangle) = ||(0,1)g||^{-1}$, where $||(a,b)|| = \sqrt{a^2 + b^2}$. This can be seen by letting $g = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} k$, where $k \in K$. So

$$f(w_0^{-1}\begin{pmatrix} 1 & u_\infty \\ 0 & 1 \end{pmatrix}g) = (y + y^{-1}(x + u_\infty)^2)^{-\frac{s+1}{2}} = y^{\frac{s+1}{2}}((x + u_\infty)^2 + y^2)^{-\frac{s+1}{2}}.$$

Also

$$f(w_0^{-1}\begin{pmatrix} 1 & u_p \\ 0 & 1 \end{pmatrix}) = \begin{cases} (p^{-m})^{s+1}, & \text{if } x = p^{-m}u \text{ with } m \ge 1, \\ 1, & \text{if } x \in \mathbb{Z}_p \end{cases}$$

We can calculate in two ways: First, we write

$$c_r(g) = \sum_{\alpha \in \mathbb{O}} \int_{\mathbb{Q} \setminus \mathbb{A}} f(w_0^{-1} \begin{pmatrix} 1 & u + \alpha \\ 0 & 1 \end{pmatrix} g) \psi_0(-ru) du.$$

Then since $u \longrightarrow f(w_0^{-1} \begin{pmatrix} 1 & u + \alpha \\ 0 & 1 \end{pmatrix} g)$ is invariant under $\hat{\mathbb{Z}}$, we have

$$\int_{\mathbb{Q}\setminus\mathbb{A}} f(w_0^{-1} \begin{pmatrix} 1 & u + \alpha \\ 0 & 1 \end{pmatrix} g) \psi_0(-ru) \, du = \int_{\mathbb{R}/\mathbb{Z}} y^{\frac{s+1}{2}} ((x + u_\infty + \alpha)^2 + y^2)^{-\frac{s+1}{2}} e^{2\pi i r u_\infty} \, du_\infty,$$

where $r \in \mathbb{Z}$. If we write $\alpha = \frac{n}{m}$, where m > 0, gcd(m, n) = 1,

$$c_r(g) = e^{2\pi i r x} y^{\frac{s+1}{2}} \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} m^{s+1} \int_0^1 ((mu_{\infty} + n)^2 + m^2 y^2)^{-\frac{s+1}{2}} e^{-2\pi i r u_{\infty}} du_{\infty}.$$

This is exactly the same sum in Ram Murty's lecture.

Second, we write $c_r(g) = \prod_p W_{p,r}(g_p)$, where

$$W_{\infty,r}(g_{\infty}) = \int_{\mathbb{R}} y^{\frac{s+1}{2}} ((x+u_{\infty})^2 + y^2)^{-\frac{s+1}{2}} e^{2\pi i r u_{\infty}} du_{\infty},$$

$$W_{p,r}(g_p) = \int_{\mathbb{Q}_p} f(w_0^{-1} \begin{pmatrix} 1 & u_p \\ 0 & 1 \end{pmatrix}) \psi_{0p}(-ru_p) du_p.$$

We can see that $W_{\infty,r}(g_{\infty})=e^{-2\pi i r u_{\infty}}\int_{\mathbb{R}}y^{\frac{s+1}{2}}((u_{\infty})^2+y^2)^{-\frac{s+1}{2}}e^{2\pi i r u_{\infty}}du_{\infty}$. We can show that $W_{p,r}(g_p)=\int_{\mathbb{Q}_p}f(w_0^{-1}\begin{pmatrix}1&u_p\\0&1\end{pmatrix})\psi_{0p}(-ru_p)=0$ if $r\notin\mathbb{Z}_p$ and, if $r=p^lu,\,l\in\mathbb{Z}_+\cup\{0\}$ and $u\in\mathbb{Z}_p^{\times}$,

$$W_{p,r}(g_p) = \int_{\mathbb{Q}_p} f(w_0^{-1} \begin{pmatrix} 1 & u_p \\ 0 & 1 \end{pmatrix}) \psi_{0p}(-ru_p) = \frac{(1 - p^{-s-1})(1 - (p^{-s})^{l+1})}{1 - p^{-s}}$$
$$= (1 - p^{-s-1})(1 + p^{-s} + \dots + (p^{-s})^l).$$

Hence $c_r(g) = 0$ unless $r \in \mathbb{Z}$. For $r \in \mathbb{Z}$, let $r = p_1^{k_1} \cdots p_j^{k_j}$.

$$\prod_{p < \infty} W_{p,r}(g_p) = \frac{1}{\zeta(s+1)} \prod_{i=1}^{j} (1 + p_i^{-s} + \dots + (p_i^{-s})^{k_i}) = \frac{1}{\zeta(s+1)} (\sum_{d \mid r} d^{-s}).$$

This coincides with the Fourier expansion in Ram Murty's lecture.

9.2 Local coefficients and crude functional equation. Let $I(\nu, \sigma)$ be the induced representation and $A(\nu, \sigma, w)$ be the intertwining operator from $I(\nu, \sigma)$ to $I(w\nu, w\sigma)$. Denote by $\lambda_{\psi}(w\nu, w\sigma)$ be the Whittaker functional for $I(w\nu, w\sigma)$. Then $\lambda_{\psi}(w\nu, w\sigma)A(\nu, \sigma, w)$ is another non-zero Whittaker functional for $I(\nu, \sigma)$. Since the Whittaker functionals are unique up to a scalar, there exists a scalar $C_{\psi}(\nu, \sigma, w)$, called local coefficient, such that

$$\lambda_{\psi}(\nu,\sigma) = C_{\psi}(\nu,\sigma,w)\lambda_{\psi}(w\nu,w\sigma)A(\nu,\sigma,w).$$

Special case of maximal parabolic subgroups: Suppose $I(s, \pi)$ be the induced representation, where π be an admissible representation of $\mathbf{M}(F)$, F local field, where $\mathbf{P} = \mathbf{M}\mathbf{N}$ is a maximal parabolic subgroup. Then

$$\lambda_{\psi}(s,\pi) = C_{\psi}(s,\pi,w_0)\lambda_{\psi}(-s,w_0(\pi))A(s,\pi,w_0)$$

So $C_{\psi}(s, \pi, w_0)$ is a complex function. In terms of Whittaker functions, for $f \in I(s, \pi)$,

$$C_{\psi}(s, \pi, w_0) = \frac{W_f(e)}{W_{A(s, \pi, w_0)f}(e)}.$$

Theorem 9.8 (Crude functional equation).

$$\prod_{i=1}^{m} L_S(is, \pi, r_i) = \prod_{v \in S} C_{\psi_v}(s, \pi_v, w_0) \prod_{i=1}^{m} L_S(1 - is, \pi, \tilde{r}_i).$$

Proof. Consider the functional equation of the Eisenstein series

$$E(s, \pi, f_s, e) = E(-s, w_0(\pi), M(s, \pi)f_s, e).$$

Then

$$E_{\psi}(s, \pi, f_s, e) = E_{\psi}(-s, w_0(\pi), M(s, \pi)f_s, e).$$

Note that $M(s,\pi)f_s = \bigotimes_v A(s,\pi_v,w_0)f_{s,v}$. So the right hand side is

$$\prod_{v \in S} W_{A(s,\pi_v,w_0)f_{s,v}}(e) \times \prod_{v \notin S} W_{A(s,\pi_v,w_0)f_v^0}(e).$$

Here $A(s, \pi_v, w_0) f_v^0 = \prod_{i=1}^m \frac{L(is, \pi_v, r_i)}{L(1+is, \pi_v, r_i)} \tilde{f}_v^0$, where \tilde{f}_v^0 is the unique $\mathbf{G}(\mathcal{O}_v)$ -fixed vector in $I(-s, w_0(\pi_v))$ such that $\tilde{f}_v^0(e) = 1$. Hence

$$W_{\tilde{f}_v^0}(e) = \prod_{i=1}^m L(1 - is, w_0(\pi_v), r_i) = \prod_{i=1}^m L(1 - is, \pi_v, \tilde{r}_i).$$

Therefore,

$$\prod_{v \notin S} W_{A(s,\pi_v,w_0)f_v^0}(e) = \prod_{i=1}^m \frac{L_S(is,\pi,r_i)}{L_S(1+is,\pi,r_i)} \frac{1}{L_S(1-is,\pi,\tilde{r}_i)}.$$

So

$$\prod_{i=1}^{m} L_S(is, \pi, r_i) = \prod_{v \in S} \frac{W_{f_{s,v}}(e)}{W_{A(s, \pi_v, w_0)f_{s,v}}(e)} \prod_{i=1}^{m} L_S(1 - is, \pi, \tilde{r}_i).$$

By the definition of local coefficients, $\frac{W_{f_{s,v}}(e)}{W_{A(s,\pi_v,w_0)f_{s,v}}(e)} = C_{\psi_v}(s,\pi_v,w_0)$. Hence our assertion follows. \square

By induction on i as in Theorem 7.4, we obtain the functional equation $L_S(s, \pi, r_i) = \prod_{v \in S} \gamma_i(s, \pi_v, r_i, \psi_v) L_S(1 - s, \pi, \tilde{r}_i)$. In order to extract more precise functional equations, we need to define the local L and ϵ -factors at bad places. We will do it by studying the local coefficients $C_{\psi_v}(s, \pi_v, w_0)$. They are basically a product of γ -functions, namely, γ_i is the usual γ -factor. They should be canonical, in the sense that they are Artin L and ϵ -factors. So in the next section, we review the local Langlands correspondence and Artin L and ϵ -factors.

10. Local Langlands' correspodence.

Let **G** be a split reductive group defined over a local field F. Let LG be the dual group and W_F be the Weil group. It is defined as follows:

If
$$F = \mathbb{C}$$
, $W_F = \mathbb{C}^{\times}$.

If $F = \mathbb{R}$, $W_F = \mathbb{C}^{\times} \times \{\tau\}$, where $\tau^2 = -1$, $\tau z \tau^{-1} = \bar{z}$ for $z \in \mathbb{C}^{\times}$. Here $W_{\mathbb{R}}^{ab} = \mathbb{R}^{\times}$.

Suppose F is a p-adic field. Let $Gal(\bar{F}/F)$ be the absolute Galois group, and $k = \mathcal{O}/\mathfrak{p}$ be the residue field with |k| = q. Let $Gal(\bar{k}/k)$ the Galois group. Let $Fr: x \longmapsto x^q$ be the Frobenius automorphism in $Gal(\bar{k}/k)$. We can show that $\langle Fr \rangle = \{Fr^n : n \in \mathbb{Z}\} \neq Gal(\bar{k}/k)$. Let $h: Gal(\bar{F}/F) \longrightarrow Gal(\bar{k}/k); \sigma \longmapsto \sigma|_{\bar{k}}$ be the canonical surjection. We define $W_F = h^{-1} \langle Fr \rangle$. Denote $Ker(h) = I_F$, the inertia group. Then we have an exact sequence

$$1 \longrightarrow I_F \longrightarrow W_F \longrightarrow \mathbb{Z} \longrightarrow 1.$$

Theorem 10.1 (reciprocity isomorphism of local class field theory). There exists an isomorphism $r_F: F^{\times} \longrightarrow W_F^{ab}$.

Naive version of local Langlands' conjecture. Let $\phi: W_F \times SL_2(\mathbb{C}) \longrightarrow {}^LG$ be an admissible homomorphism, namely, $\phi|_{W_F}$ is semi-simple, and $\phi|_{SL_2(\mathbb{C})}$ is a complex representation. Then

- (1) ϕ "parametrizes" a finite set Π_{ϕ} , called L-packet, of isomorphism classes of irreducible representations of $G = \mathbf{G}(F)$.
- (2) Every admissible representations of G belongs to Π_{ϕ} for a unique ϕ .
- (3) The representations in the L-packet Π_{ϕ} are parametrized by the component group $C_{\phi} = S_{\phi}/Z_{L_G}S_{\phi}^0$, where S_{ϕ} is the centralizer of $Im(\phi)$ in LG , and S_{ϕ}^0 is the connected component of the identity in S_{ϕ} , and Z_{L_G} is the center of LG .

Properties of L-packets.

- (1) The elements of Π_{ϕ} are square integrable if and only if $Im(\phi)$ is not contained in any proper parabolic subgroups of ^{L}G .
- (2) The elements of Π_{ϕ} are tempered if and only if $\phi(W_F)$ is bounded.
- (3) Given ϕ , and $r: {}^LG \longrightarrow GL_N(\mathbb{C})$, there is a definition of Artin L and ϵ -factors $L(s, r \circ \phi), \epsilon(s, r \circ \phi, \psi)$. Artin γ -factor is defined by

$$\gamma(s, r \circ \phi, \psi) = \epsilon(s, r \circ \phi, \psi) \frac{L(1 - s, \tilde{r} \circ \phi)}{L(s, r \circ \phi)}.$$

If $F = \mathbb{R}$ or \mathbb{C} , Langlands proved the local Langlands correspondence (We only need W_F , not $W_F \times SL_2(\mathbb{C})$). If F is p-adic, the local Langlands correspondence is available only for GL_n and a few other low rank groups. (The most difficult problem is constructing and parametrizing supercuspidal representations.)

Special case of G = GL_n . In this case, for any subset S in LG , the centralizer $Z_{L_G}(S)$ is connected. Hence $C_{\phi} = 1$ for any ϕ . Therefore, Π_{ϕ} is a singleton for any ϕ . Let $\mathcal{G}_F(n)$ be the set of equivalent classes of admissible representations of $W_F \times SL_2(\mathbb{C})$; two representations $\phi_1, \phi_2 : W_F \times SL_2(\mathbb{C}) \longrightarrow GL_n(\mathbb{C})$ are said to be equivalent if they are conjugate by an element of $GL_n(\mathbb{C})$.

Let $\mathcal{A}_F(n)$ be the set of equivalent classes of admissible representations of $GL_n(F)$. We identify $\mathcal{G}_F(1)$, the characters of W_F , with $\mathcal{A}_F(1)$, the characters of F^{\times} , via the reciprocity isomorphism $r_F: F^{\times} \longrightarrow W_F^{ab}$.

Theorem 10.2 (Harris-Taylor, Henniart). For each $n \geq 1$, there exists a canonical bijection

$$\pi_F: \mathcal{G}_F(n) \longrightarrow \mathcal{A}_F(n), \quad \rho \longmapsto \pi_F(\rho),$$

such that

- (1) $\pi_F(\rho(\chi)) = \pi_F(\rho)(\chi)$ for any character χ of F^{\times}
- (2) $det \rho$ corresponds to $\omega_{\pi_F(\rho)}$, the central character of $\pi_F(\rho)$

- (3) $\pi_F(\rho) = \pi_F(\tilde{\rho})$
- (4) $L(s, \rho_1 \otimes \rho_2) = L(s, \pi_F(\rho_1) \times \pi_F(\rho_2)), \ \epsilon(s, \rho_1 \otimes \rho_2, \psi) = \epsilon(s, \pi_F(\rho_1) \times \pi_F(\rho_2), \psi).$ Here the left hand sides are Artin L and ϵ -factors defined by Deligne. The right hand sides are Rankin-Selberg L and ϵ -factors defined by Jacquet, Piatetski-Shapiro and Shalika.

Fact. $\pi_F(\rho)$ is supercuspidal if and only if ρ is an irreducible representation of W_F .

Lemma 10.3. Irreducible representations of W_F are of the form $\tau \otimes | |^u$, where τ is a representation of $Gal(\bar{F}/F)$, and $u \in \mathbb{C}$.

Example 10.4 (Supercuspidal representations of $GL_2(F)$). By the local Langlands' correspondence, supercuspidal representations of $GL_2(F)$ correspond to irreducible 2-dimensional representations of W_F . By the above lemma, it is enough to consider irreducible representations $\tau: Gal(\bar{F}/F) \longrightarrow GL_2(\mathbb{C})$. It is well-known that the image of $\bar{\tau}$, where $\bar{\tau}: Gal(\bar{F}/F) \longrightarrow PGL_2(\mathbb{C})$, is one of the following: D_{2n} (dihedral group), A_4 (tetrahedral), S_4 (octahedral), and A_5 (icosahedral). However, since any Galois group Gal(E/F) is solvable, A_5 cannot occur. If the image is D_{2n} , it corresponds to $Ind_F^E\chi$, where E/F is a quadratic extension and χ is a character of E^{\times} . We call it monomial cuspidal representation, or tame case. The other cases are called extraordinary supercuspidal representations, and they occur only when $v|_2$.

Recall Jacobson-Morozov theorem: any equivalence class of homomorphism $SL_2(\mathbb{C}) \longrightarrow {}^LG$ corresponds to a unipotent orbit in LG .

By the theory of Jordan normal forms, unipotent classes in $GL_n(\mathbb{C})$ are in one to one correspondence with partitions λ of n. Let $\phi_1: W_F \longrightarrow GL_m(\mathbb{C})$ be the parametrization of a supercuspidal representation σ of $GL_m(F)$, and $\phi_2: SL_2(\mathbb{C}) \longrightarrow GL_p(\mathbb{C})$ be the homomorphism given by the unipotent orbit (p). Then

$$\phi_1 \otimes \phi_2 : W_F \times SL_2(\mathbb{C}) \longrightarrow GL_{mp}(\mathbb{C}),$$

parametrizes the Steinberg representation, denoted by $St(\sigma, p)$, which is the unique subrepresentation of

$$Ind |det|^{\frac{p-1}{2}} \sigma \otimes |det|^{\frac{p-1}{2}-1} \sigma \otimes \cdots \otimes |det|^{-\frac{p-1}{2}} \sigma.$$

The unique quotient of the above induced presentation is parametrized by

$$|det|^{\frac{p-1}{2}}\phi_1\oplus\cdots\oplus|det|^{-\frac{p-1}{2}}\phi_1:W_F\times SL_2(\mathbb{C})\longrightarrow GL_m(\mathbb{C})\times\cdots\times GL_m(\mathbb{C})\subset GL_{mp}(\mathbb{C}).$$

Special case of unramified principal series (spherical representations). Let π be a spherical representation such that $\pi \hookrightarrow I(\chi)$, where χ is an unramified character. Then we have associated a semi-simple conjugacy class $\{\hat{t}\} \subset {}^L G$ such that $\chi \circ \beta^{\vee}(\varpi) = \beta^{\vee}(\hat{t})$. Then the Langlands' parameter for π is

$$\phi: F^{\times} \longrightarrow {}^{L}T \subset {}^{L}G, \quad \varpi \longmapsto \hat{t}.$$

For example, let $\pi = \pi(\mu_1, ..., \mu_n)$ be a spherical representation of $GL_n(F)$, where μ_i 's are unramified characters. Then the semi-simple conjugacy class is $diag(\mu_1(\varpi), ..., \mu_n(\varpi))$, and

$$\phi: F^{\times} \longrightarrow {}^{L}T \subset GL_{n}(\mathbb{C}), \quad \varpi \longmapsto diag(\mu_{1}(\varpi), ..., \mu_{n}(\varpi)).$$