Viscous entrainment: creating an atomic-sized liquid spout

Physics Department & James Franck Institute University of Chicago Wendy Zhang

Toronto, Canada November 2003

With Thanks to

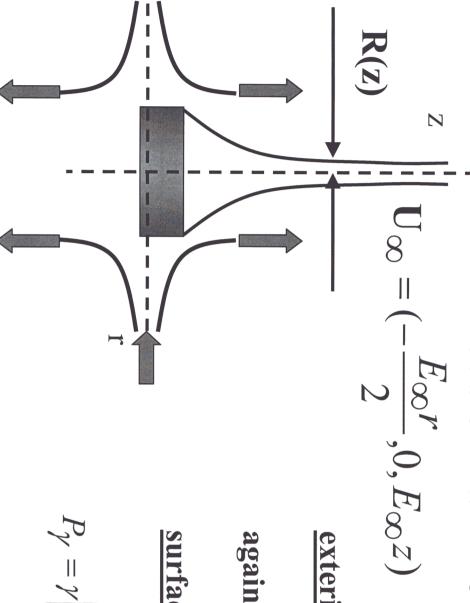
Sidney Nagel

Itai Cohen Jason Wyman, Sarah Case

Michael Siegel

Brenner, Shankar Venkataramani, Jens Eggers, David Quere Howard Stone, Todd Dupont, Leo Kadanoff, Michael

Viscous entrainment from a nozzle



exterior viscous stresses

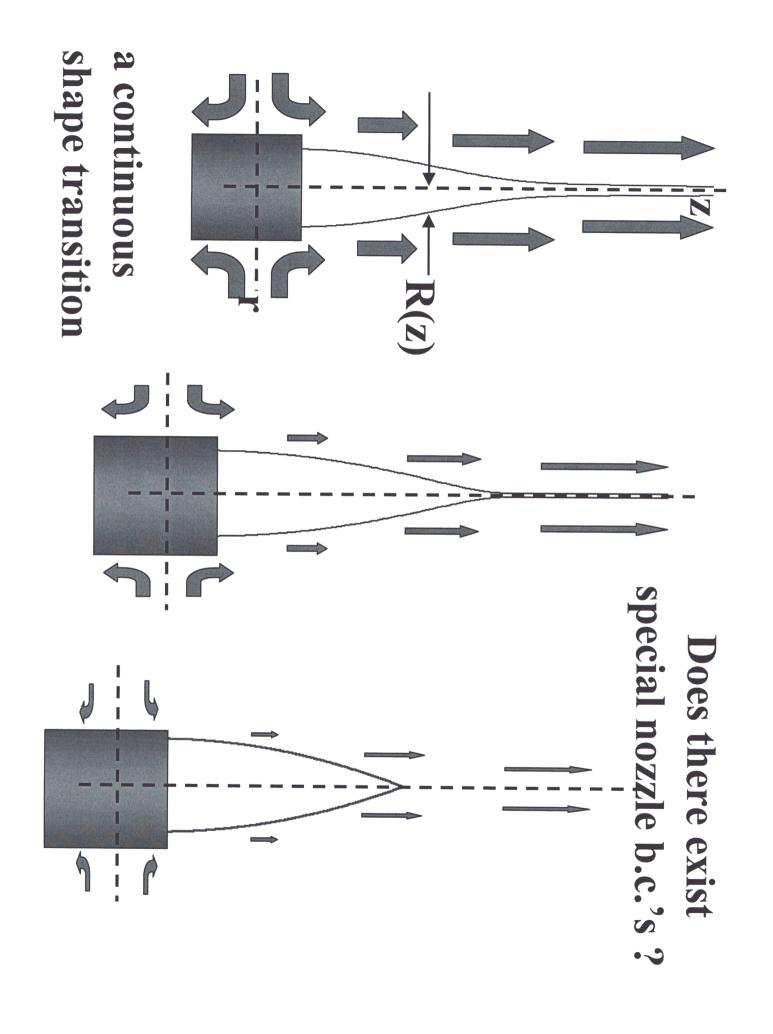
against

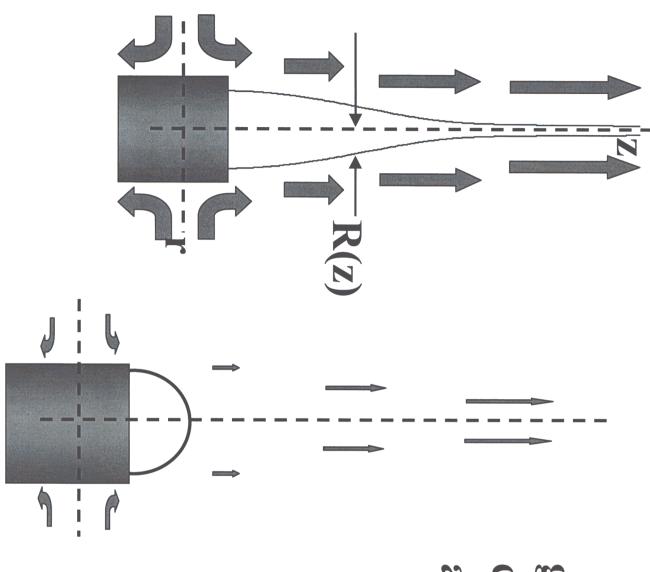
surface tension pressure

$$P_{\gamma} = \gamma \left(\frac{1}{R_{\text{radial}}} - \frac{1}{R_{\text{axial}}} \right)$$
sharpens smoothes

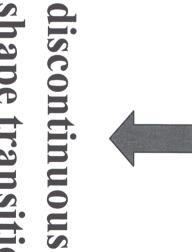
& interior viscous stresses

(spout far less viscous than exterior)

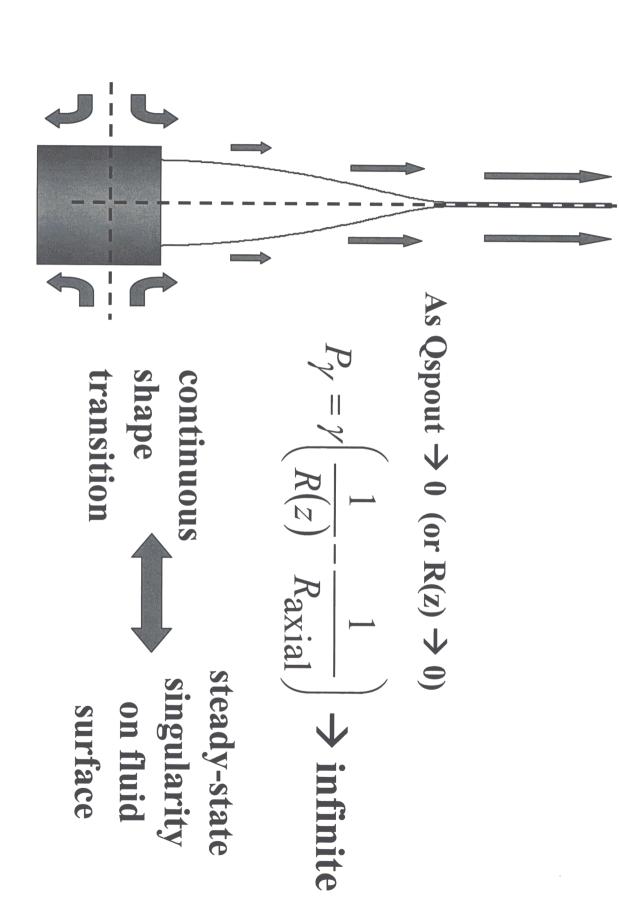




generic boundary conditions at the nozzle

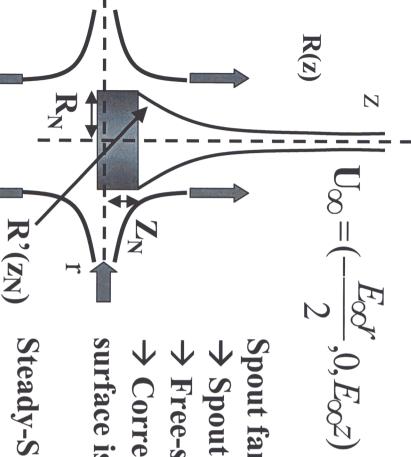


shape transition at onset of entrainment



Is a continuous shape transition possible at the onset of viscous entrainment?

by tuning the macroscopic boundary conditions Nature of entrainment transition can be tuned



 $\mathcal{E}_{\infty^{\mathcal{Z}}}$ Long-wavelength model of viscous withdrawal

Spout far less viscous than exterior

- → Spout long & slender
- → Free-slip surface
- surface is a line of volume sources/sinks Correction flow in exterior due to spout

Steady-State Only

Two tunable nozzle b.c.'s

nozzle location nozzle radius

RN

contact angle

constraint)

large reservoir

(no global volume

 $R'(z_N)$

Taylor, G. I. Proc. Roy. Soc. 1932 Acrivos & Lo, JFM 1975

Nondimensionalize

Rescale radius R by R_N

nozzle radius

Rescale downstream distance z by $\frac{R_N}{2\sqrt{\lambda}}$

Rescale stress/pressure by $\mu_{ext}E_{\infty}$

viscous stresses in the exterior

$$\lambda = \frac{\mu_{\text{spout}}}{\mu_{\text{exterior}}}$$
 far less than 1

dimensionless

rate

$$Ca = \frac{2\mu_{ext}E_{\infty}R_N}{\mathcal{F}}$$

Governing equation

$$Q_{\text{spout}} = Ca\left(z \ R^2(z)\right) - R^4(z)\frac{dP}{dz}$$

unknown interior flow interi volume flux induced driv

interior flow driven by

in spout by exterior flow pressure gradient $P(z) = \frac{1}{R} - 4\lambda \frac{d^2R}{dz^2} + Ca \frac{z}{R} \frac{dR}{dz}$

Boundary conditions

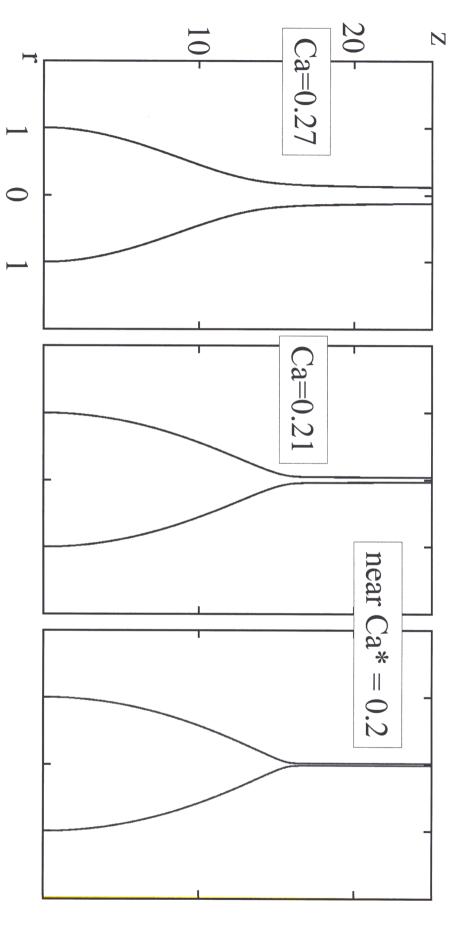
surface interior tension viscous

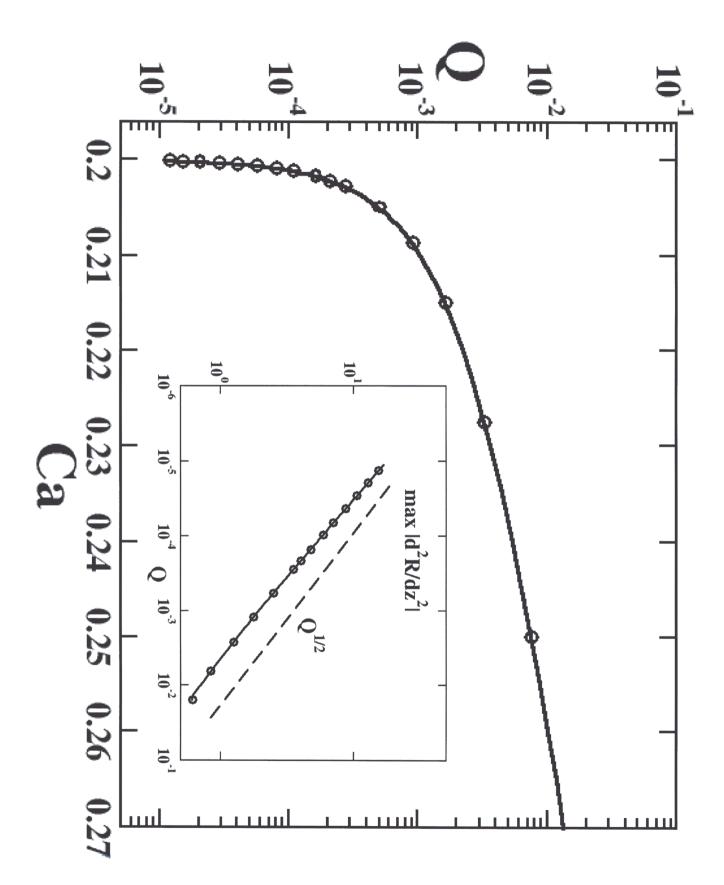
stresses

at nozzle: $R(z_N)=1$ $\left. \frac{dR}{dz} \right|_{Z_N}$ $= \cot(\theta_{contact})$

far downstream: $R(z) \rightarrow \sqrt{\frac{1}{zCa}}$ 2*Qspout* $2 \rightarrow 8$

Numerical solution of long-wavelength equation: decreasing exterior withdrawal rate $Ca \rightarrow Ca_* \lambda = 0.00625$



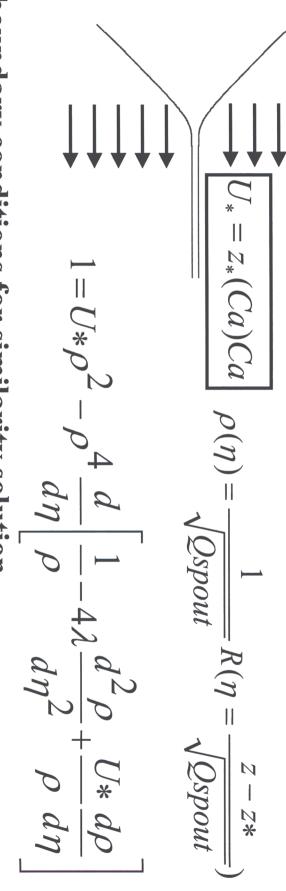


downstream, Rspout ~ Qspout^{1/2}

Spout profile self-similar near Z* If Qspout $\rightarrow 0$ $R_*/R_N \rightarrow 0$ separation of length-scale

boundary layer Qspout^{1/2} upstream Rspout ~ R_N ends at Z* **Qspout** = **0** shape **Uspout**^{1/2} $R_* = (2 \text{ Qspout } / Z_* \text{ Ca})^{1/2}$

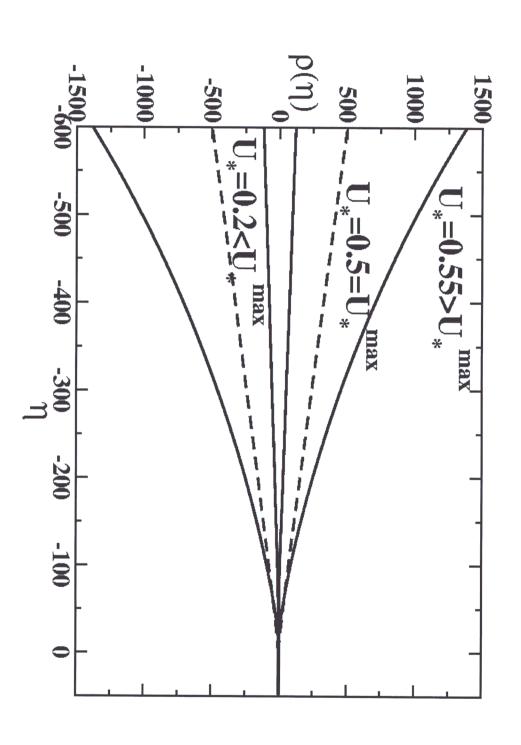
Self-similar dynamics \(\Rightarrow \) Simplified problem entrainment of a liquid cylinder from a conical base by a uniform flow

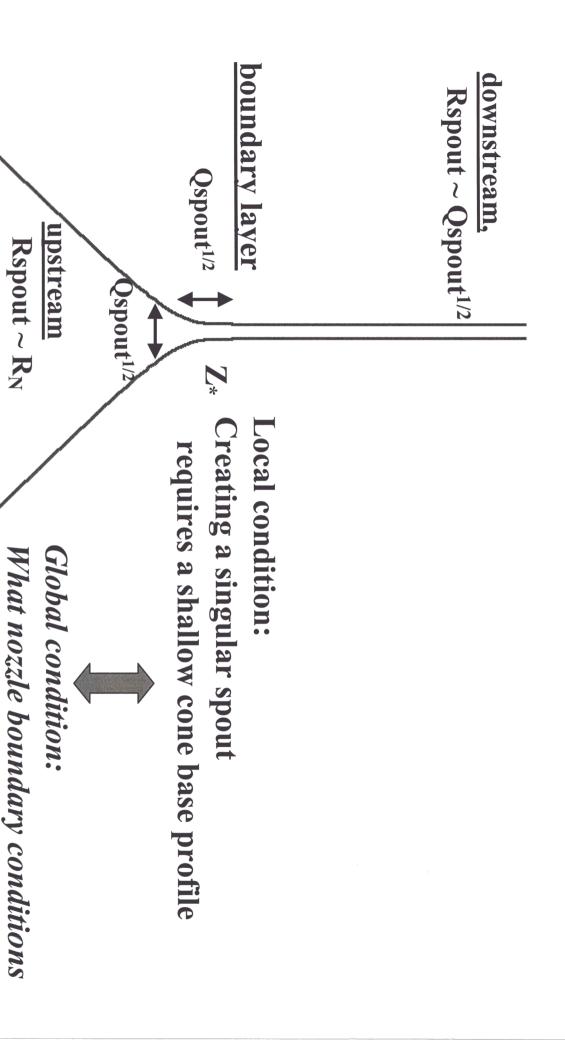


boundary conditions for similarity solution

upstream of
$$z_*$$
 $\rho(\eta) \to s\eta$ $\eta \to -\infty$
downstream of z_* $\rho(\eta) \to \sqrt{\frac{1}{U*}}$ $\eta \to \infty$

A continuous family of similarity solutions exists for $U_* < Umax$, or S < Smax





Qspout = 0 shape

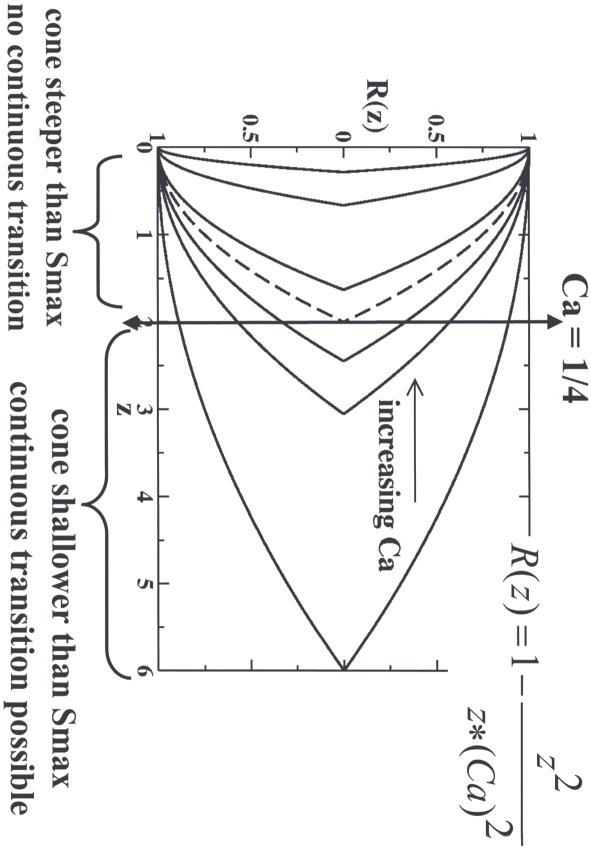
gives rise to a shallow cone?

Governing equation supports a family of exact solutions for Qspout=0; valid for arbitrary λ

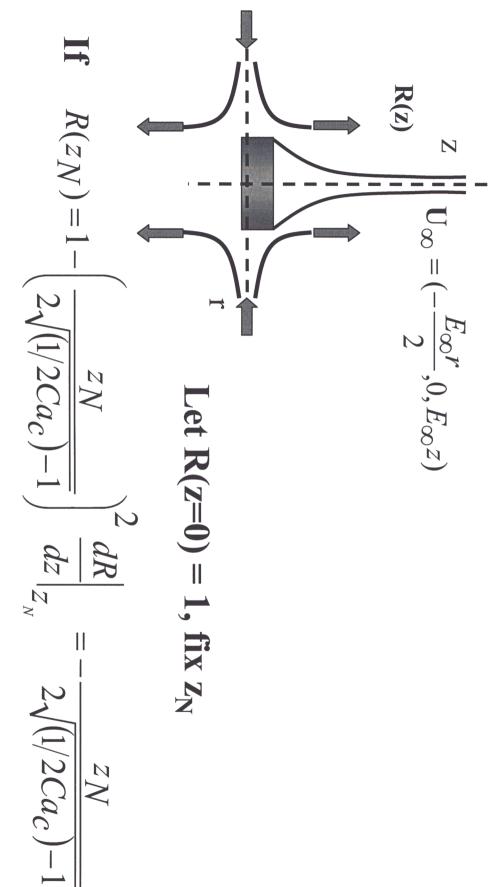
$$R(z) = 1 - \frac{z^2}{z*(Ca)^2} \qquad z*(Ca) = 2\sqrt{\frac{1}{2Ca}} - 1$$

$$Q_{\text{Spout}} = Caz \ R^2(z) - R^4(z) \frac{dP}{dz} \quad P(z) = \frac{1}{R} - 4\lambda \sqrt{\frac{2R}{A^2}} + Ca \frac{z}{R} \frac{dR}{dz}$$

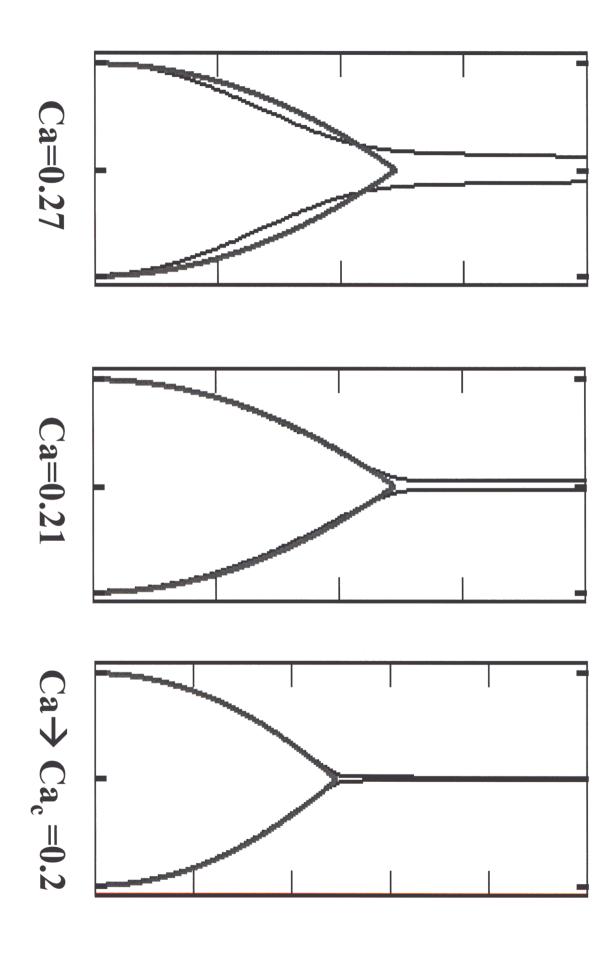
Solutions correspond to drops with conical tips



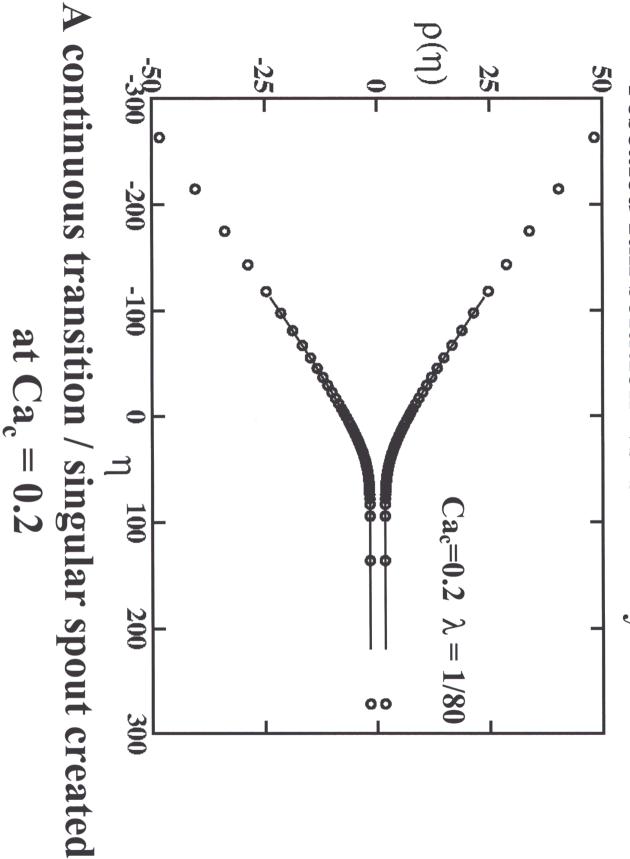
Strategy for creating singular (near singular) spouts

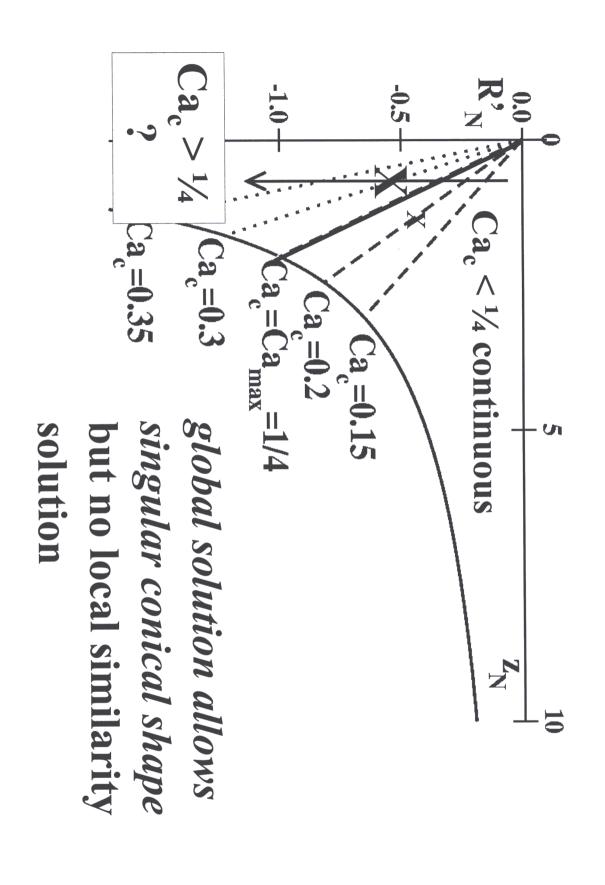


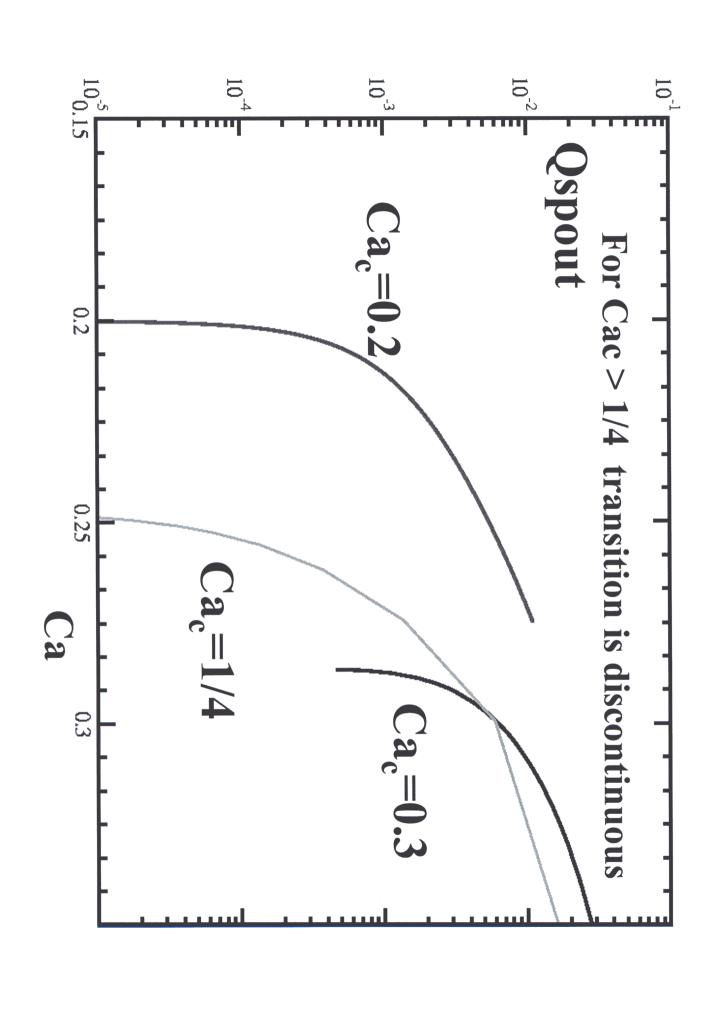
solution for R(z) when $Ca = Ca_c$ then Qspout = 0 quadratic solution is a possible

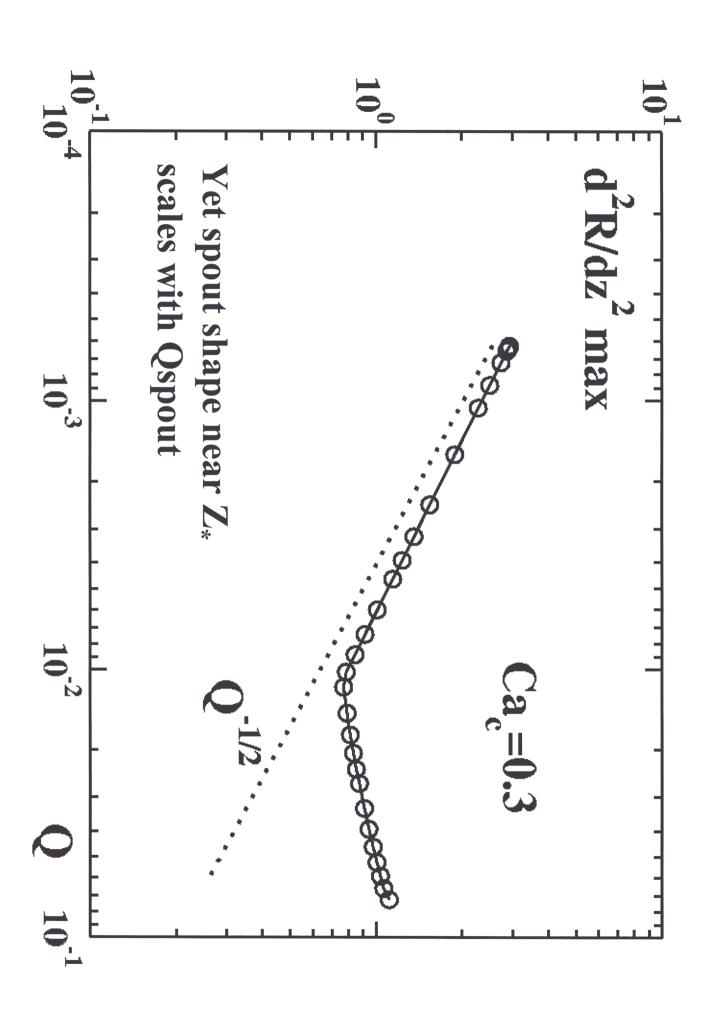


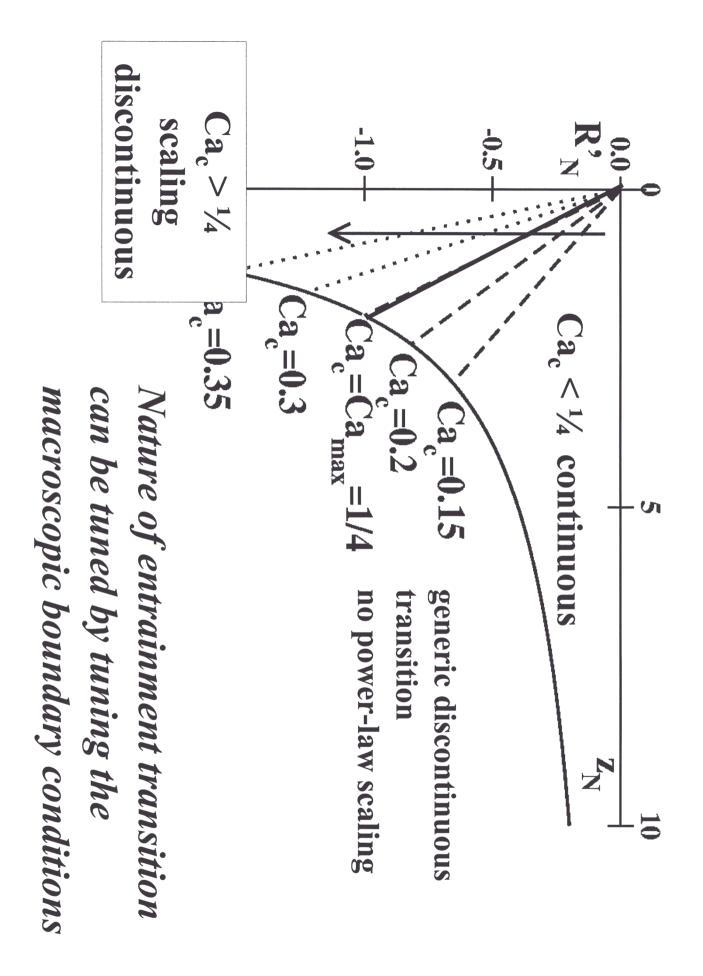
rescaled full solution vs similarity solution



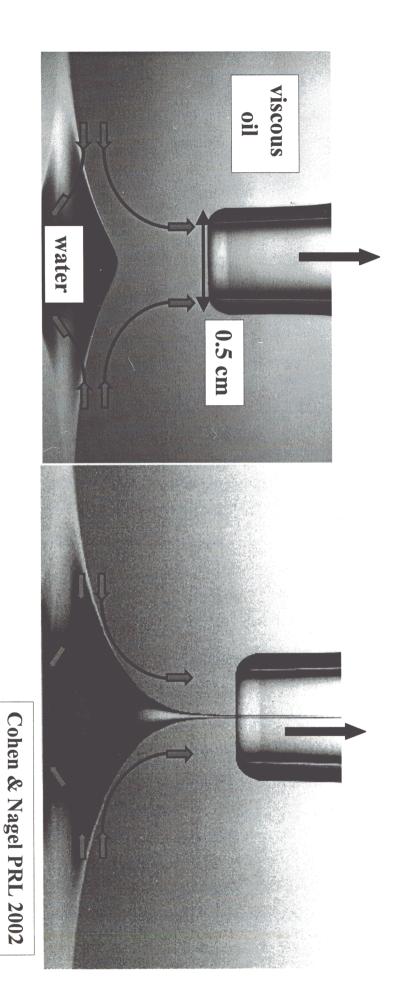






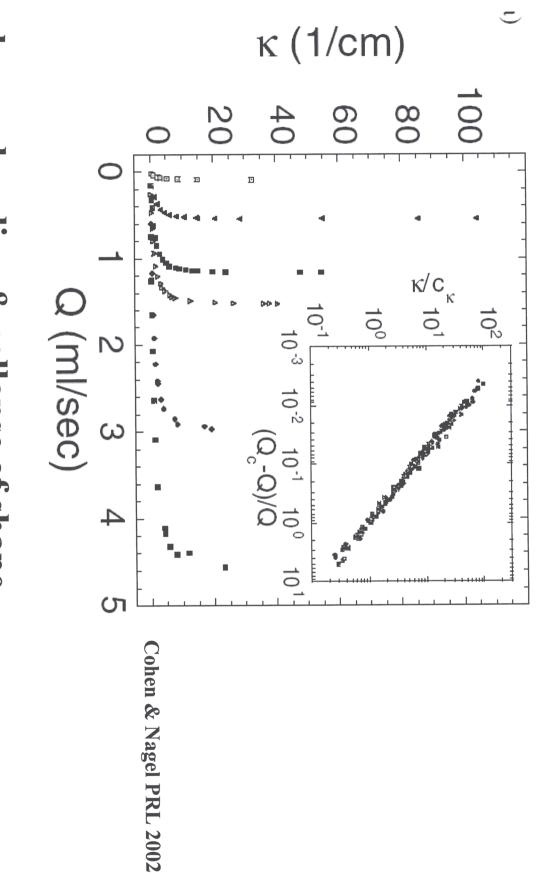


Selective withdrawal experiment



low entrainment rate

high entrainment rate



observed scaling & collapse of shape a small cutoff lengthscale: but also R_hump $\sim 10 \mu m$