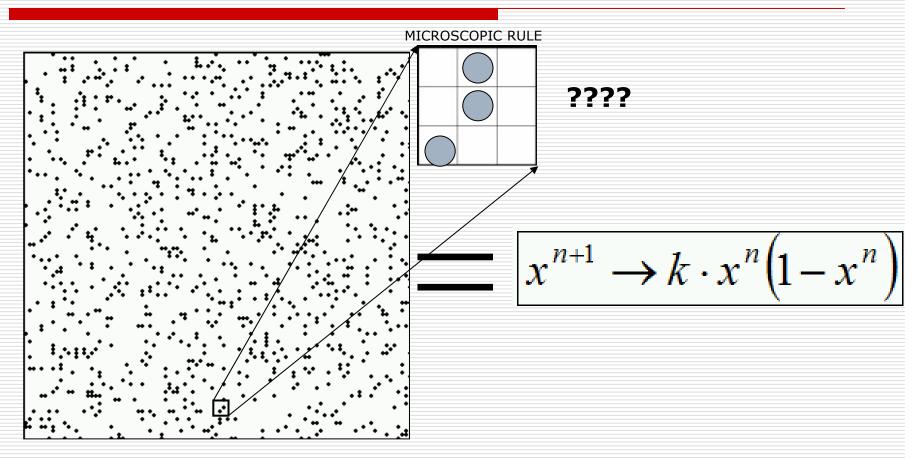
Can spatially extended CA system replicate the logistic map?

Witold Dzwinel Department of Computer Science, AGH University, Kraków, Poland

Dzwinel, W., In Search of Cellular Automata Reproducing Chaotic Dynamics Described by Logistic Formula, *Lecture Notes in Computer Science*, ACRI 2006, LNCS 4173, pp. 657 – 666, 2006.

Metaphor



populated grid of CA with density x^n

Outline

- Motivations
- CA system with global logistic behavior
 - n definition of CA looked for and model assumptions
 - n derivation of microscopic CA rules
- Experiments on system dynamics
 - n limited motion ability
 - n size of neighborhood
 - n non-symmetrical neighborhood
- Infinite system size logistic coupled map lattice.
- Conclusions

Motivation

- understanding the role of spatial structures and their dynamics in population evolution
 - n explaining the principal sources of inconsistency between logistic law and experimental findings
 - does the spatio-temporal chaos is accompanied by chaotic changes of the total population density?

Consequences of chaotic evolution

- When the average population density is oscillating or chaotic, the colony becomes vulnerable on external threats, e.g., pestilences
- Additional degrees of freedom defined by space and microscopic interactions between individuals allows for creating "self-preservation instinct" and flexible reaction of the population on the external danger.
- Scrutinizing the ways the adverse effects of chaotic evolution can be eliminated, is fundamental to protect the colony from extinction.
- Conversely, this knowledge can allow for eliminating the structured populations, which are very difficult to destroy (e.g., bacterial biofilms)

Existing models

COUPLED MAP

Lloyd, A.L., (1995). The coupled Logistic Map: A Simple Model For The Effects of Spatial Heterogeneity on Population Dynamics, J. Theor. Biol., 173, 217-30

COUPLED MAP LATTICES

Kaneko, K., (1993), Theory and applications of coupled map lattices, John Wiley & Sons New York,

LATTICE DYNAMICAL SYSTEMS

Chow S-N, Mallet-Paret, J., Van Vleck, E., S., (1996) Dynamics of lattice differential equations, Int J. Bifurc. and Chaos, 6/9, 1605-1621

MOMENT CLOSURE (IBM MODEL)

David J. Murrell, D., J., Dieckmann, U., Law, R., (2004) On moment closures for population dynamics in continuous space, J. Theor. Biol 229 (2004) 421-432

PDE (e.g. reaction-diffusion eqs.)

Holmes, E.E., Lewis, M., A., Banks, J.E., Veit, R.R., (1994). Partial differential equations in ecology: Spatial interactions and population dynamics, *Ecology*, 75(1), 17-29.

... sources of inconsistency

- heterogeneity of the environment
- population dispersion may not increase linearly with density
- time delay in the operations: of density dependence and in dispersion/competition
- the random collision of individuals may not represent interactions among organisms well.
- creation of spatial patterns
- what more??

... sources of inconsistency

- Here we will focus on the role of more fundamental factors connected with spatio-temporal dynamics:
 - n spatial structures formation,
 - motion ability of population members,
 - n size and type of the neighborhood.

CA class of models searched

- o species living on 2-D, squared lattice $x(l,m)=[\{l,m\}, l,m=1,...,M]$
- PBC, M>=300 (reflecting, adiabatic, CBPBC checked)
- o neighborhood sum of dispersal and competition $\Omega(l,m) = \Omega_D(l,m,R) \cup \Omega_C(l,m,r)$
 - n Ω_D(I,m,R_D) → responsible for reproduction of new individuals in unpopulated sites
 - n $\Omega_{C}(l,m,r_{C}) \rightarrow$ responsible for elimination of populated sites
- o initial, random population, with density $x=x_0$

CA class of models searched cd.

- Two repetitive steps
 - n random walk with a given time period Δt
 - n evaluation round

$$\mathcal{E}_{lm}^{n\Delta t+1} \to \mathbf{R} \left[X_{lm}^{nT}, \Omega_{D}(l, m, R), \Omega_{C}(l, m, r) \right]$$

$$X_{lm}^{n\Delta t+1} = \begin{cases} 1 & \text{if } rnd < \mathcal{E}_{lm}^{n+1} \\ 0 & \text{if } rnd > \mathcal{E}_{lm}^{n+1} \end{cases}$$

We are looking for the set of probabilities $a_{0/1i}$

$$\mathbf{R} = \left\{ 0 \le a_{1,i} \le 1 \land 0 \le a_{0,i} \le 1; X_{lm}^{n+1} = 1 \right\}$$

- n $a_{1,i}$ probability that populated site $X_{lm} = 1$ will **remain** populated in the next evaluation round
- n $a_{0,i}$ probability that unpopulated site $X_{lm}=0$ will **become** populated in the next evaluation round

Assumptions

- for ∆t→∞ random walk ⇔ random scatter of individuals over the CA lattice after each evaluation round
- o $\forall (lm) \in \mathcal{X}(l,m)$ the number of $X_{i \in \Omega(l,m)} = 1$, undergoes the Bernoulli distribution
- Let x_iⁿ the average population density in nth evaluation round

... then

$$x^{n+1} \to px^{n} \sum_{i=0}^{N_{C}} a_{1i} \binom{N_{C}}{i} (x^{n})^{i} (1-x^{n})^{N_{C}-i} + q(1-x^{n}) \sum_{i=0}^{N_{D}} a_{0(N_{N}-i)} \binom{N_{D}}{i} (x^{n})^{N_{D}-i} (1-x^{n})^{i}$$
where
$$x^{n} = \sum_{l,m}^{M} X_{lm}^{n} / M^{2}$$

on the other hand

$$x^{n+1} \to k \cdot x^n (1-x^n)$$

thus after some algebra

$$p \cdot \left(\frac{N_C \cdot a_{1i}}{N_C - i}\right) + q \cdot \left(\frac{N_D \cdot a_{0i+1}}{i+1}\right) = k; \ a_{1N_N} = a_{00} = 0$$
 (1) for $i = 0, ..., N_N - 1$

and then ...

o for $N_D = N_C = N_N$ (i.e. $R_D = r_C$) the maximum value of k, $kmax \ a_{0i} = a_{1i} = 0$ and $i = N_N/2$:

$$k_{\text{max}} = 4 \cdot \left(\frac{N_N \left(\frac{p+q}{2} \right) + p}{N_N + 2} \right) \wedge \lim_{N_N \to \infty} (k_{\text{max}}) = 4 \cdot \left(\frac{p+q}{2} \right)$$
 (2)

- the CA model can reproduce the whole logistic map in macro-scale for certain microscopic rules \mathbf{R} in case of infinite neighborhood $N_N \rightarrow \infty$.
- for N_N=8 the system reproduces only the part of it, i.e., the fragment for k≤k_{max}≈3.6

Rules

- The number of rules is infinite.
- A few exemplary rules

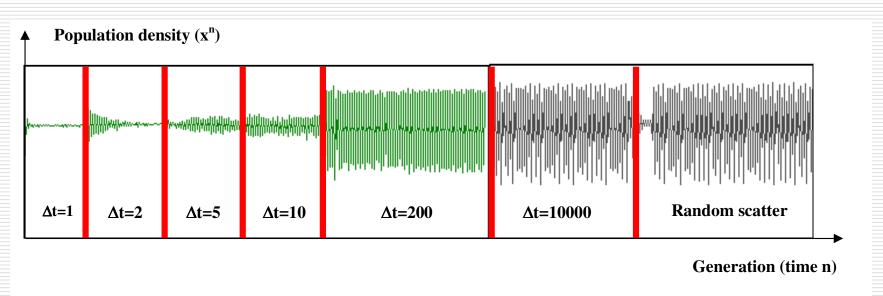
No. neigh. į	1		2		3		4	
	a_{li}	a_{0i}	a_{li}	a_{0i}	a_{li}	a_{0i}	a_{li}	a_{0i}
0	0	0	0.4	0	1	0	0	0
1	0	0.45	0.7	0.4	1	0.325	0	0.45
2	0.9	0.9	0.9	0.7	1	0.614	0.7	0.386
3	1	0.9	1	0.9	1	0.85	1	1
4	1	1	1	1	1	1	1	1
5	0.9	1	0.9	1	1	1	1	1
6	0.9	0.9	0.7	0.9	0.9	0.7	0.9	0.7
7	0.45	0	0.4	0.7	0.45	0	0.45	0
8	0	0	0	0.4	0	0	0	0

for totalistic CA, the rule is

$$a_{i} = k \cdot \frac{(i+1)}{(N_{N}+1)} \cdot \left(1 - \frac{i}{N_{N}}\right) = k \cdot Y_{i} \left(1 - \widetilde{Y}_{i}\right) \wedge k \in (0, k_{\text{max}}]$$
(3)

"logistic" microscopic CA rule builds-up LM

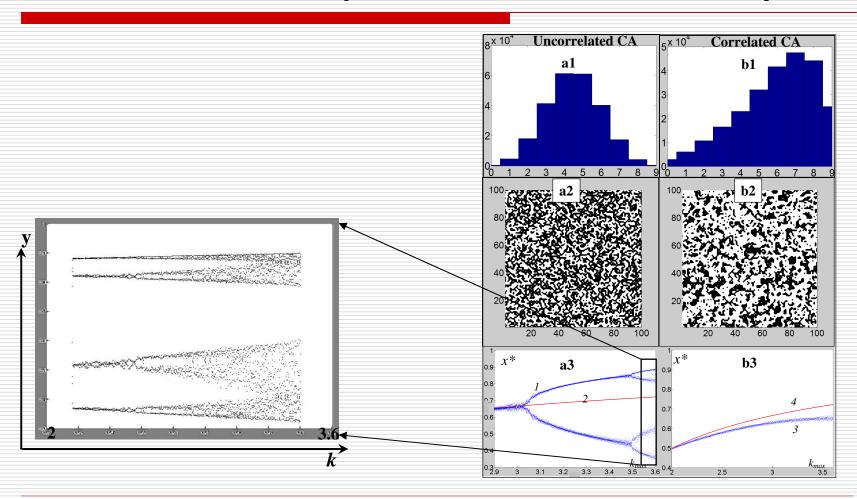
Results – decrease in mobility



The fragments of time plots which represent the evolution of the average population density. The value of Δt means how many steps of random walk were applied between subsequent evaluation rounds.

Decrease in mobility disables chaotic behavior

Results- comparison to 0 mobility



different R_D/r_c ratios

from

$$p \cdot \left(\frac{N_C \cdot a_{1i}}{N_C - i}\right) + q \cdot \left(\frac{N_D \cdot a_{0i+1}}{i+1}\right) = k; \ a_{1N_N} = a_{00} = 0 \text{ for } i = 0, ..., N_N - 1$$

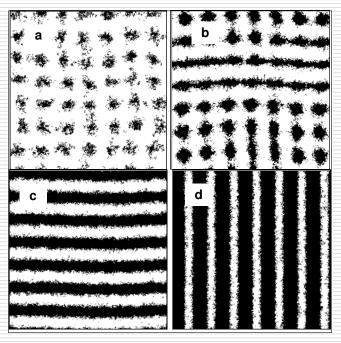
we have that

1]
$$N_C < N_D(r_C < R_D)$$
; $a_{0N_D} = k$ $\Rightarrow k \le k_{\text{max}} = 1$
2] $N_C > N_D(r_C > R_D)$; $a_{1N_D} \frac{N_C}{(N_C - N_D)} = k \Rightarrow k \le k_{\text{max}} = \frac{1}{1 - \frac{N_D}{N_C}}$

i.e. for 1] – CA replicating LM does not exist for 2] – it exists only for $1 < N_D/N_C < 0.75$ (full map)

Non-symmetric neighborhood destroys LM

Results – different R_D/r_C ratios

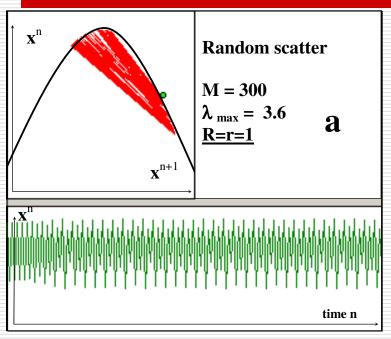


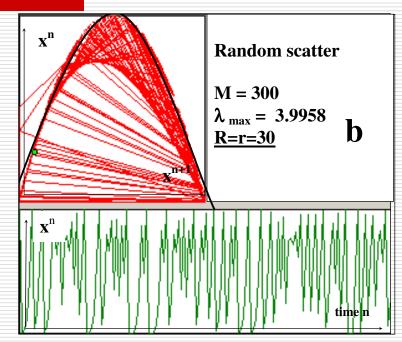
The regular and stable patterns created by the discrete "motionless" CA system for, M=200, R=1 and r=30:

- a) k=1.15, t=3000, $x^*=0.13$; b) k=1.4, t=600, $x^*=0.31$;
- c) k=2, t=600, $x^*=0.51$; d) k=4, t=600, $x^*=0.73$,

where t is the number of time-steps and x^* is the average population density.

Results- increasing neighborhood



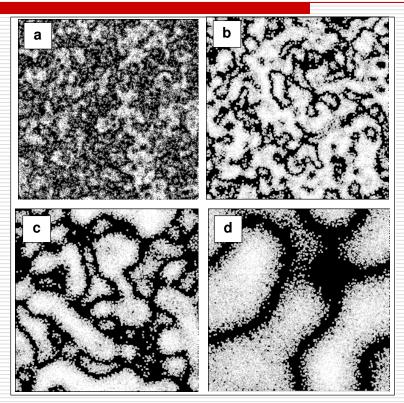


The phase diagrams for increasing dispersal and competition radiuses $(R_D=r_C)$.

- a) for $(R_D = r_C = 1)$, the system just becomes to be chaotic.
- b) the chaos develops for increasing number of neighbors

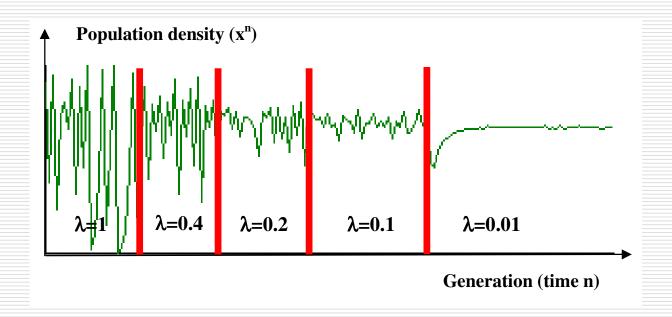
Greater neighborhood builds-up LM

Results- increasing neighborhood



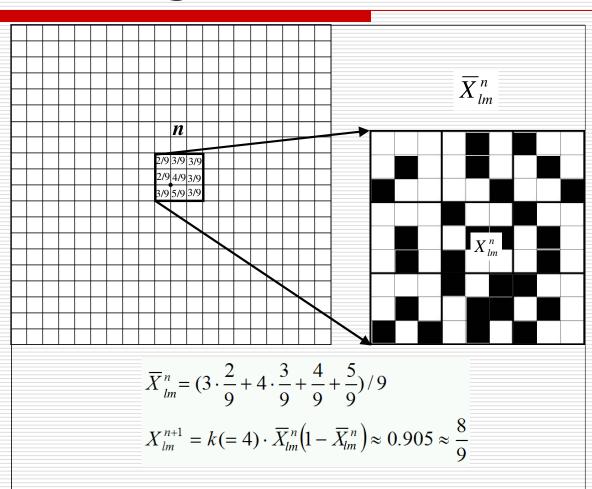
The self-similar patterns produced on the CA 300x300 lattice for the motionless population model assuming r=R= a) 3 b) 10 c) 20 d) 50. The black dots stand for populated nodes.

Results- increasing neighborhood

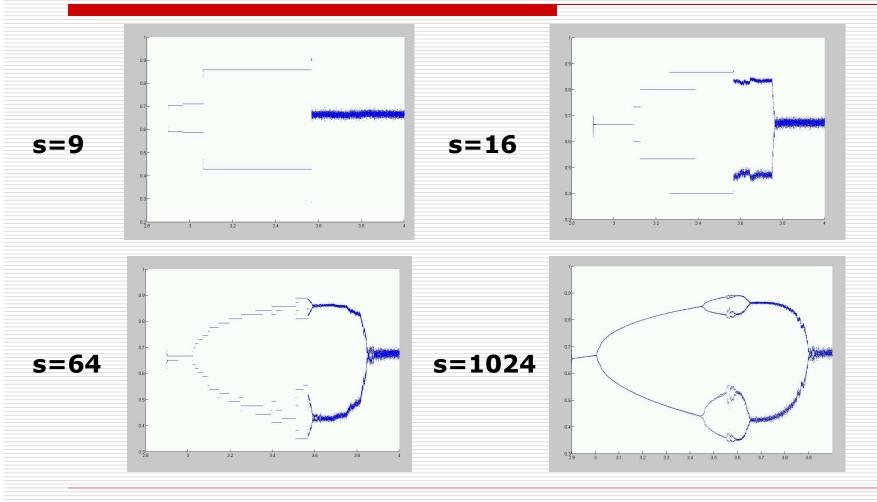


The fragments of plots showing the changes of population density in time for the motionless "correlated" CA system for various aspect ratios $\lambda = (2\cdot R + 1)/M$.

Infinite neighborhood limit



Increasing neighborhood

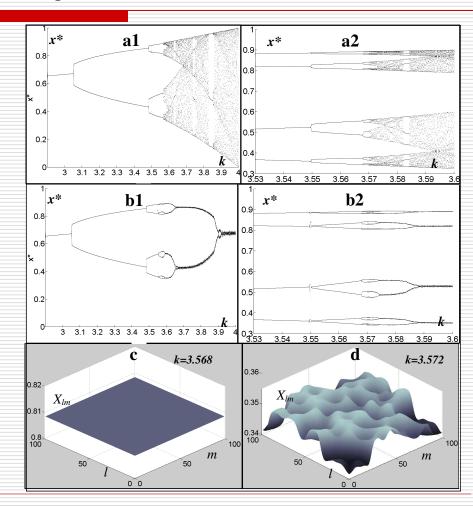


2-D coupled map lattice

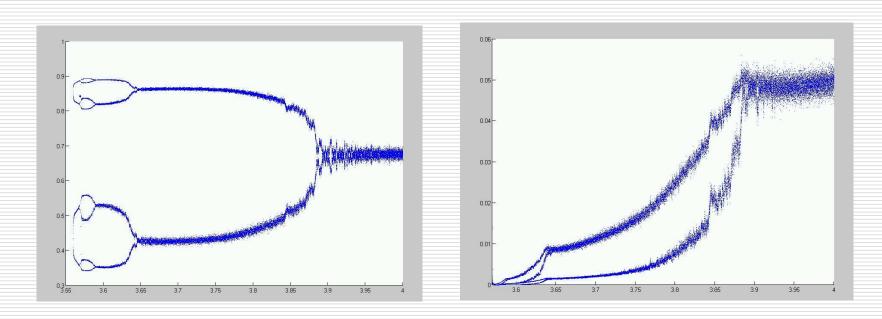
$$X_{lm}^{n+1} = k \cdot \overline{X}_{lm}^{n} \cdot \left(1 - \overline{X}_{lm}^{n}\right)$$
where $\overline{X}_{lm} = \sum_{i \in \Omega(l,m) \cup \{l,m\}} X_i / N$

$$x^{n+1} = k \cdot x^{n} \cdot (1 - x^{n}) - k \cdot \sigma_{n}^{2}$$

$$\sigma_{n}^{2} = E\left[\left(\overline{X}_{lm}^{n}\right)^{2}\right] - E^{2}\left(\overline{X}_{lm}^{n}\right)$$

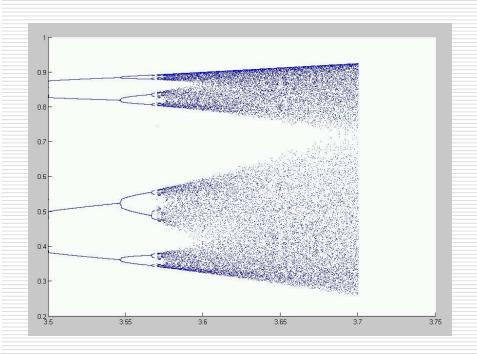


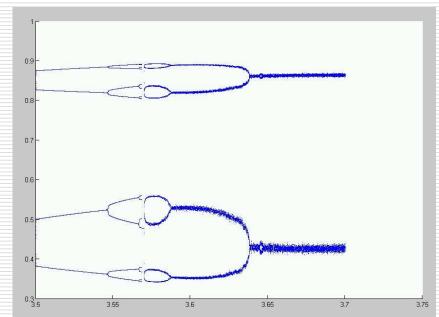
The variance dynamics



If the variance σ^2 =0 the entire system behaves according to the logistic law. The non-zero variance signals the existence of spatial structures.

Spatio-temporal vs. global chaos





The value of $X_{10,10}$ for increasing k

The value of average population density *x* for increasing k

Conclusions

- There exist a class of stochastic CA which global behavior replicates LM, assuming:
 - n certain class of microscopic rules (specifically, but not exceptionally, micro-logistic law)
 - n untied motion of individuals destroying patterns
 - n sufficiently large neighborhood
- The populations with different dispersion and competition mostly cannot mimic LM.
- Motionless populations creates spatio-temporal structures, which stops global chaotic behaviour (in terms of x)
- For large neighborhood, motionless populations can replicate exact LM up to accumulation point k_{∞} due to strong synchronization producing uniform distribution of population.
- For k>k instead the chaotic behavior of x, the spatiotemporal chaos is observed.