Automorphisms of the type II Arveson system of Warren's noise

Boris Tsirelson

Tel Aviv University //www.tau.ac.il/~tsirel/

A talk on ND

July 2007

Toronto

Arveson system = product system of Hilbert spaces:

$$H_{s+t} = H_s \otimes H_t$$
 for $s, t \in (0, \infty)$ (associative, measurable; separable).

Classical part = maximal type I subsystem:

Fock spaces;

generated by units.

Unit:
$$u_{s+t} = u_s \otimes u_t$$
, $u_t \in H_t$, $||u_t|| = 1$ (measurable; normalized).

A simple example of type II. The classical part:

$$\Omega_t^{\text{white}} = \{ \text{Brownian paths on } [0, t] \};$$

$$\Omega_{s+t}^{\text{white}} = \Omega_s^{\text{white}} \times \Omega_t^{\text{white}}; \quad \text{(assoc., meas.)}$$

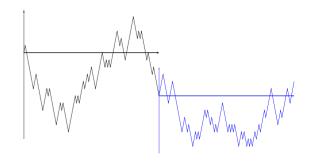
$$H_t^{\text{white}} = L_2(\Omega_t^{\text{white}}).$$

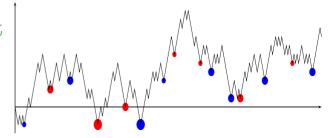
A nonclassical extension (J. Warren, 1999):

 $\Omega_t = \{ \text{Brownian paths on } [0, t] \text{ with independent }$ random signs attached to local minima $\};$

$$\Omega_{s+t} = \Omega_s \times \Omega_t$$
; (assoc., meas.)

$$H_t = L_2(\Omega_t) \supset H_t^{\text{white}}.$$





(countable, dense)

Automorphism: $\theta_{s+t} = \theta_s \otimes \theta_t$, $\theta_t : H_t \to H_t$ unitary (meas.)

If (u_t) is a unit then $(\theta_t u_t)_t$ is a unit.

For the type I system, (H_t^{white}) , over the Brownian motion (B_t) :

Units:

$$u_t^z(\omega) = \exp(zB_t(\omega)) \exp(-(\operatorname{Re} z)^2 t) \exp(\mathrm{i}at).$$

 $u^z = (u_t^z)_t, z \in \mathbb{C}$

normalization trivial

Automorphisms act on units: $u^z \mapsto u^{Mz}$, $M: \mathbb{C} \to \mathbb{C}$ a motion (shift, rotat.)

Imaginary shift, $z \mapsto z + i\lambda$: $\theta_t = \exp(i\lambda B_t)$, multiplication operator.

Real shift, $z \mapsto z + \lambda$: drift, $B_t \mapsto B_t - 2\lambda t$. (nonsingular; Jacobian)

Rotation, $z \mapsto e^{i\lambda}z$: Wiener chaos spaces, $dB_t \mapsto e^{i\lambda}dB_t$.

Especially, $z \mapsto -z$ (rotation by π): $B_t \mapsto -B_t$.

Extends or not to the type II system, (H_t) , over Warren's noise?

Imaginary shift: yes.

Transitive on units

Real shift: yes.

 $z \mapsto -z$ (rotation by π): no. (Evident?) maxima are not minima

evident

sharp minima

THEOREM. For every $\lambda \in (0, 2\pi)$ the automorphism of the classical part (H_t^{white}) of the Arveson system (H_t) , corresponding to the rotation $z \mapsto e^{i\lambda}z$, cannot be extended to an automorphism of the whole system.

B. Tsirelson, arXiv:math.OA/0612303v1

The proof combines two arguments, one 'commutative' and one 'noncommutative'. The simplest case $\lambda = \pi \ (z \mapsto -z)$ needs only the 'commutative' argument: maxima are not minima.

$$H_t = L_2(\Omega_t) \supset L_2(\Omega_t^{\text{white}}) = H_t^{\text{white}};$$

$$\Omega_t \ni \omega = (\omega^{\text{white}}, \eta), \quad \eta : \text{LocMin}(\omega^{\text{white}}) \to \{-1, +1\};$$

$$f \in H_t, \text{ general form:} \quad f(\omega) = f(\omega^{\text{white}}, \eta) = \sum_S f_S(\omega^{\text{white}}) \eta_S; \quad \text{(enumerate)}$$

$$\text{finite } S \subset \text{LocMin}(\omega^{\text{white}}); \quad \eta_S = \prod_{s \in S} \eta_s; \quad \text{and } ||f||^2 = \sum_S ||f_S||^2.$$

$$\sum_S (\dots) = \sum_{n=0}^{\infty} \sum_{|S|=n} (\dots);$$

n=0: H_t^{white} , the classical part; invariant under automorphisms (any n) n=1: $H_t^{(1)}$, the first superchaos; also i.u.a. (chaos = Wiener chaos space) $f \in H_t^{(1)}$, general form: $f(\omega) = \sum_s f_s(\omega^{\text{white}}) \eta_s$, $s \in \text{LocMin}(\omega^{\text{white}})$; $H_t^{(1)} = L_2((0,t) \times \Omega_t^{\text{white}})$, a σ -finite measure); (not locally finite) $f_s(\omega^{\text{white}}) = f(s,\omega^{\text{white}})$, only $s \in \text{LocMin}(\omega^{\text{white}})$ matter.

Commutative algebra $BoB((0,t) \times \Omega_t^{white})$ of all bounded Borel functions acts on $H_t^{(1)}$. Special observables...

Automorphisms act on observables, $A \mapsto \theta_t^{-1} A \theta_t$.

Assume that some automorphism $\theta^{(\pi)}$ extends the rotation by π $(z \mapsto -z)$.

Striving to a contradiction we seek an observable A such that

$$(*) \qquad (\theta_1^{(\pi)})^{-1} A \theta_1 = -A; \qquad (minima \leftrightarrow maxima)$$

$$(**)$$
 $A = +1$ always. (minima only)

$$\text{Try} \quad A(s, \omega^{\text{white}}) = \begin{cases} +1 & \text{if } s \text{ is a local minimum of } \omega^{\text{white}}, \\ -1 & \text{if } s \text{ is a local maximum of } \omega^{\text{white}}, \\ 0 & \text{otherwise;} \end{cases}$$

(**) holds; (*) —? Approximation by simpler observables is needed.

LEMMA. The action of BoB(0, t) on $H_t^{(1)}$ commutes with $\theta_t|_{H_t^{(1)}}$ for every automorphism θ .

HINT. The indicator of (0,0.5) leads to the orthogonal projection onto the θ -invariant subspace $H_{0.5}^{(1)} \otimes H_{0.5}^{\text{white}} \subset H_1^{(1)}$.

 $\theta^{(\pi)}$ acts on BoB(Ω_t^{white}) by $\omega \mapsto -\omega$, and on BoB(0, t) trivially $(\forall \theta)$.

If $A' \in BoB(0,1)$, $A'' \in BoB(\Omega_1^{\text{white}})$ and $A \in BoB((0,1) \times \Omega_1^{\text{white}}))$ are (say)

 $A'(\cdot) = 1 \text{ on } (0, 0.5), \quad A'(\cdot) = 0 \text{ on } (0.5, 1),$ $A''(\omega^{\text{white}}) = \operatorname{sgn}(\omega^{\text{white}}(1) - \omega^{\text{white}}(0.5)),$ $A(s, \omega^{\text{white}}) = A'(s)A''(\omega^{\text{white}}),$

then $\theta_1^{(\pi)}$ transforms A into -A. Hint: $\theta_1^{(\pi)} = \theta_{0.5}^{(\pi)} \otimes \theta_{0.5}^{(\pi)}$.

(*)
$$\theta_1^{(\pi)}$$
 transforms $A_{n,\delta}$ into $-A_{n,\delta}$; here $(\delta \in (0,0.5), n = 1,2,\dots)$

 $A_{n,\delta}(s,\omega^{\text{white}}) = \sum_{k=1}^{n} A'_{n,k}(s) A''_{n,k,\delta}(\omega^{\text{white}}),$

 $A'_{n,k}$ is the indicator of $\left[\frac{k-1}{2n}, \frac{k}{2n}\right)$,

$$A_{n,k,\delta}^{"}(\omega^{\text{white}}) = \operatorname{sgn}(\omega^{\text{white}}(\frac{k}{2n} + \delta) - \omega^{\text{white}}(\frac{k}{2n})).$$

LEMMA. For every $f \in H_{0.5}^{(1)} \otimes H_{0.5}^{\text{white}}$, $(\langle A \rangle_f \text{ means } \langle Af, f \rangle)$

(**) $\liminf_{n\to\infty} \langle A_{n,\delta} \rangle_f \to ||f||^2$ as $\delta \to 0+$.

HINT. The natural measure on $(0,1) \times \Omega_1^{\text{white}}$ is σ -finite, but the spectral measure of any state f is finite.

Contradiction between (*) and (**), $\|\theta_1^{(\pi)}f\|^2 = -\|f\|^2$, proves the theorem for $\lambda = \pi$.

The worst case: $\lambda = 2\pi/3$.

The 'commutative' argument — as before; $A_{n,\delta}$, (**).

However, (*) fails; $\theta_1^{(2\pi/3)}$ transforms $A_{n,\delta}$ into an observable beyond the commutative algebra (surely not $-A_{n,\delta}$). Instead,

$$(*) \quad \langle A_{n,\delta} \rangle_f + \langle A_{n,\delta} \rangle_g + \langle A_{n,\delta} \rangle_h \le (3 - \varepsilon) ||f||^2,$$

where $g = \theta_1^{(2\pi/3)} f$, $h = (\theta_1^{(2\pi/3)})^{-1} f$, and ε is a positive absolute constant.

Define Q on $L_2(\Omega_1^{\text{white}})$ as multiplication by $\omega^{\text{white}}(1)$, then $\theta_1^{(\pi/2)}$ transforms Q into P such that $[P,Q]=-2\mathrm{i}$ (CCR; Weyl relations, in fact), and $\theta_1^{(2\pi/3)}$ transforms Q into $-\frac{1}{2}Q+\frac{\sqrt{3}}{2}P$.

THEOREM. Let selfadjoint operators P, Q, R be such that P + Q + R = 0 and [P, Q] = [Q, R] = [R, P] = -i. Then $2 < \| \operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R \| < 3$.

Enough to prove for the irreducible representation of CCR. This is done in:

B. Tsirelson, arXiv:quant-ph/0611147v1: "How often is the coordinate of a harmonic oscillator positive?"

Why $\|\operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R\| > 2$?

Numerics (finite dimension, number states); approximately 2.1.

Clearly, $\|\operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R\| \le 3$; why $\|\operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R\| < 3$?

In fact, $\|\operatorname{sgn}(P+c) + \operatorname{sgn}(Q+c) + \operatorname{sgn}(R+c)\| < 3$ for every $c \in \mathbb{R}$.

Easy part: 3 is not an eigenvalue of $\operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R$, since 2 is not an eigenvalue of $\operatorname{sgn} P + \operatorname{sgn} Q$

by a classical theorem of F. and M. Riesz on Fourier transform.

Nevertheless, $\|\operatorname{sgn} P + \operatorname{sgn} Q\| = 2$.

Hard part: the spectrum of $\operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R$ is discrete, except for two accumulation points, ± 1 . Moreover,

$$\operatorname{trace}((\operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R)^2 - \mathbf{1})^2 < \infty.$$

Why trace $((\operatorname{sgn} P + \operatorname{sgn} Q + \operatorname{sgn} R)^2 - \mathbf{1})^2 < \infty$?

Weyl transform of an operator is a function of p, q.

(not always)

Tomographic definition: Weyl(f(aP + bQ))(p,q) = f(ap + bq), extended by linearity. (some continuity)

$$\operatorname{trace}(A^{2}) = \frac{1}{2\pi} \iint |\operatorname{Weyl}(A)|^{2} dpdq.$$

LEMMA. Weyl $(\operatorname{sgn} P) \circ (\operatorname{sgn} Q)(p,q) = \frac{2}{\pi}\operatorname{Si}(2pq).$

Here
$$A \circ B = (AB + BA)/2$$
, and $Si(x) = \int_0^x \frac{\sin u}{u} du$.

Maybe, the spectrum is always discrete outside the interval

$$\left[\liminf_{p^2+q^2\to\infty} \operatorname{Weyl}(A)(p,q), \lim_{p^2+q^2\to\infty} \operatorname{Weyl}(A)(p,q) \right] ?$$