Multipliers and the Second Dual of a Banach Algebra

Zhiguo Hu University of Windsor

Joint work with M. Neufang and Z.-J. Ruan

December 12, 2007

Let A be a Banach algebra with a faithful multiplication.

Recall: $\mu \in B(A)$ is called a **left** (**right**) **multiplier** on A if $\mu(ab) = \mu(a)b$ ($\mu(ab) = a\mu(b)$) for all $a, b \in A$.

• For each fixed $a \in A$,

 $l_a: x \longmapsto ax$ is a left multiplier on A, $r_a: x \longmapsto xa$ is a right multiplier on A.

- LM(A) := the left multiplier algebra of $A \subseteq B(A)$ RM(A) := the right multiplier algebra of $A \subseteq B(A)^{op}$ Then LM(A) and RM(A) are Banach algebras.
- $a \longmapsto l_a$ and $a \longmapsto r_a$ are injective and contractive.
- If A has a bounded approximate identity (**BAI**), then

$$\|\cdot\|_{LM(A)} \sim \|\cdot\|_{A} \sim \|\cdot\|_{RM(A)}$$
 on A .

In this case, A can be identified with a left closed ideal in LM(A), and a right closed ideal in RM(A).

For $\mu \in LM(A)$ (resp. $\mu \in RM(A)$), we write $\mu \in A$ if $\mu = l_a$ (resp. $\mu = r_a$) for some $a \in A$.

Question: How can A be characterized inside LM(A) (resp. RM(A))?

Some representation theorems of LCQGs.

Let G be a locally compact group.

Let $L_1(G)$ be the group algebra of G and A(G) the Fourier algebra of G. As preduals of Hopf-von Neumann algebras $L_{\infty}(G)$ and L(G), resp., $L_1(G)$ and A(G) are completely contractive Banach algebras, where L(G) is the von Neumann algebra generated by the left regular representation of G.

Let M(G) be the measure algebra of G and $M_{cb}A(G)$ the algebra of completely bounded multipliers on A(G). Then $M(G) \ (\cong LM(L_1(G)) \cong LM_{cb}(L_1(G))$) and $M_{cb}A(G)$ are completely contractive Banach algebras. Theorem (Ghahramani 78; Størmer 80). There exists a weak*-weak* continuous completely isometric homomorphism $\Theta: M(G) \longrightarrow CB^{\sigma}_{L(G)}(B(L_2(G)))$.

Theorem (Haagerup 80; Spronk 02). There exists a weak*-weak* continuous completely isometric homomorphism $\widehat{\Theta}: M_{cb}\,A(G) \longrightarrow CB^{\,\sigma}_{L_{\infty}(G)}(B(L_2(G))).$

Theorem (Neufang 00). We have

$$\Theta(M(G)) = CB_{L(G)}^{\sigma, L_{\infty}(G)}(B(L_{2}(G))).$$

Theorem (Neufang-Ruan-Spronk 04). We have

$$\widehat{\Theta}(M_{cb} A(G)) = CB_{L_{\infty}(G)}^{\sigma, L(G)}(B(L_2(G))).$$

Note that in the framework of locally compact quantum groups (**LCQGs**),

$$\widehat{L_{\infty}(G)} = L(G)$$
 and $\widehat{L(G)} = L_{\infty}(G)$.

Let $\mathcal{G} = \{\mathcal{M}, \Gamma, \varphi, \psi\}$ be von Neumann algebraic LCQG (**Kustermans-Vaes**).

Following the abelian case $\mathcal{G}_a = (L_{\infty}(G), \Gamma, \varphi, \psi)$, we write $L_{\infty}(\mathcal{G}) = \mathcal{M}$, $L_1(\mathcal{G}) = \mathcal{M}_*$, and $L_2(\mathcal{G})$ for the Hilbert space associated with φ .

Then $L_1(\mathcal{G})$ is a completely contractive Banach algebra. \mathcal{G} is said to be **co-amenable** if $L_1(\mathcal{G})$ has a BAI.

It is known that for all locally compact groups G,

- $\mathcal{G}_a = (L_{\infty}(G), \Gamma, \varphi, \psi)$ is co-amenable;
- $\widehat{\mathcal{G}_a} = (L(G), \widehat{\Gamma}, \widehat{\varphi}, \widehat{\psi})$ is co-amenable \iff G is amenable.

In both cases, $L_1(\mathcal{G})$ has a BAI consisting of **states** on $L_{\infty}(\mathcal{G})$.

We show that it is true for all LCQGs.

Theorem 1 (H.-Neufang-Ruan). Let \mathcal{G} be a LCQG. Then \mathcal{G} is co-amenable $\iff L_1(\mathcal{G})$ has a BAI consisting of states on $L_{\infty}(\mathcal{G})$. The algebra $M^r_{cb}(L_1(\mathcal{G}))$ of completely bounded right multipliers of $L_1(\mathcal{G})$ was recently introduced by **Junge-Neufang-Ruan**, which is defined to be the set of all $q \in L_\infty(\widehat{\mathcal{G}})'$ such that $\rho(f)q \in \rho(L_1(\mathcal{G}))$ for all $f \in L_1(\mathcal{G})$ and the map

$$m_q^r: L_1(\mathcal{G}) \longrightarrow L_1(\mathcal{G}), f \longmapsto
ho^{-1}(
ho(f)q)$$
 is c.b.,

where $L_{\infty}(\widehat{\mathcal{G}})'$ is the commutant of $L_{\infty}(\widehat{\mathcal{G}})$ in $B(L_2(\mathcal{G}))$ and ρ is the right regular representation of \mathcal{G} .

Under the identification $q \longleftrightarrow m_q^r \in RM_{cb}(L_1(\mathcal{G}))$, $M_{cb}^r(L_1(\mathcal{G}))$ becomes a completely contractive Banach algebra.

Unifying and generalizing the representation theorems mentioned earlier, Junge-Neufang-Ruan showed

Theorem (Junge-Neufang-Ruan 06). Let \mathcal{G} be a LCQG. There is a completely isometric homomorphism

$$\pi: M^r_{cb}(L_1(\mathcal{G})) \longrightarrow CB^{\,\sigma}_{L_{\infty}(\widehat{\mathcal{G}})}(B(L_2(\mathcal{G})))$$

such that $\pi(M_{cb}^r(L_1(\mathcal{G}))) = CB_{L_{\infty}(\widehat{\mathcal{G}})}^{\sigma, L_{\infty}(\mathcal{G})}(B(L_2(\mathcal{G}))).$

Using a measure theoretic proof, **Neufang-Ruan-Spronk** (04) showed that for all locally compact groups G,

$$\pi(L_1(G)) = CB_{L(G)}^{\sigma, (L_{\infty}(G), C_b(G))}(B(L_2(G)))$$

$$= CB_{L(G)}^{\sigma, (L_{\infty}(G), RUC(G))}(B(L_2(G))),$$

where $C_b(G)$ (resp. RUC(G)) is the space of bounded cont. (resp. right uniformly cont.) functions on G.

Question: Let \mathcal{G} be a co-amenable LCQG. What is $\pi(L_1(\mathcal{G}))$? Is there a subspace Y of $L_\infty(\mathcal{G})$ such that

$$\pi(L_1(\mathcal{G})) = CB_{L_{\infty}(\widehat{\mathcal{G}})}^{\sigma,(L_{\infty}(\mathcal{G}),Y)}(B(L_2(\mathcal{G})))?$$

This was open even for the co-commutative LCQG $\mathcal{G} = (\widehat{L_{\infty}(G)}, \widehat{\Gamma}, \widehat{\varphi}, \widehat{\psi})$ (Neufang-Ruan-Spronk 04).

We will consider a *Banach algebraic* approach to this image problem.

To characterize a Banach algebra A inside RM(A) and LM(A), respectively, we introduce the following classes of Banach algebras.

A class of Banach algebras.

Definition 2 (**H.-Neufang-Ruan**). Let A be a Banach algebra with a BAI. Assume that for every $\mu \in RM(A)$, there is a closed subalgebra B of A with a BAI satisfying the following conditions.

- (I) $\mu|_B \in RM(B)$.
- (II) $f|_B \in BB^*$ for all $f \in AA^*$.
- (III) There is a family $\{B_i\}$ of closed right ideals in B such that
- (i) each B_i is weakly sequentially complete (**WSC**) with a sequential BAI;
- (ii) for all i, there exists a left B_i -module projection from B onto B_i ;
- (iii) $\mu \in A$ if $\mu|_{B_i} \in B_i$ for all i.

Then A is said to be of type (RM).

Similarly, Banach algebras of type (LM) can be defined.

A is said to be of type (M) if A is both of type (LM) and of type (RM).

Examples of Banach algebras of type (M)

- (1) All WSC Banach algebras with a *sequential* BAI, in particular, separable $L_1(\mathcal{G})$ of co-amenable LCQGs \mathcal{G} .
- (2) All group algebras $L_1(G)$ of locally compact groups.
- (3) All weighted convolution (Beurling) algebras $L_1(G,\omega)$.
- (4) Fourier algebras A(G) of all amenable groups G.
- (5) The algebras $L_1(\mathcal{G})$ of some co-amenable LCQGs \mathcal{G} .

Theorem 3 (**H.-Neufang-Ruan**). Let A be a Banach algebra of type (RM) and $\mu \in RM(A)$. T.F.A.E.

- (i) $\mu \in A$.
- (ii) $\mu^*(A^*) \subseteq \langle AA^* \rangle$.
- (iii) There exists an $m \in A^{**}$ such that for all $n \in A^{**}$, $\mu^{**}(n) = n \triangle m$ (the *right Arens product* on A^{**}).

The left version of the theorem holds if A is a Banach algebra of type (LM).

The completely isometric representation $\pi|_{L_1(\mathcal{G})}$.

Theorem 4 (H.-Neufang-Ruan). Let \mathcal{G} and let π be the same as in the representation theorem of **Junge-Neufang-Ruan**. If $L_1(\mathcal{G})$ is of type (M) (e.g., \mathcal{G} is co-amenable with $L_1(\mathcal{G})$ separable), then

$$\pi(L_1(\mathcal{G})) = CB_{L_{\infty}(\widehat{\mathcal{G}})}^{\sigma,(L_{\infty}(\mathcal{G}),RUC(\mathcal{G}))}(B(L_2(\mathcal{G}))),$$

where $RUC(\mathcal{G}) := \langle L_1(\mathcal{G}) \cdot L_{\infty}(\mathcal{G}) \rangle$.

Corollary 5 (H.-Neufang-Ruan). Let G be an amenable locally compact group and let $\widehat{\Theta}$ be the representation of $M_{cb} A(G)$ onto $CB_{L_{\infty}(G)}^{\sigma,L(G)}(B(L_2(G)))$. Then

$$\widehat{\Theta}(A(G)) = CB_{L_{\infty}(G)}^{\sigma,(L(G),UC(\widehat{G}))}(B(L_{2}(G))),$$

where $UC(\widehat{G}) = \langle A(G) \cdot L(G) \rangle$, the C^* -algebra generated by operators in L(G) with compact support.

Remark. This corollary answers an open question of **Neufang-Ruan-Spronk** (04).

An application to second dual Banach algebras.

Let A be a Banach algebra.

Then A^{**} is a Banach algebra under the **left**/the **right Arens products** defined as follows:

for m, $n \in A^{**}$, $f \in A^{*}$ and a, $b \in A$, we have

$$\langle m \cdot n, f \rangle = \langle m, n \cdot f \rangle, \qquad \langle f, m \triangle n \rangle = \langle f \cdot m, n \rangle,$$

$$\langle n \cdot f, a \rangle = \langle n, f \cdot a \rangle, \qquad \langle a, f \cdot m \rangle = \langle a \cdot f, m \rangle,$$

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle.$$
 $\langle b, a \cdot f \rangle = \langle ba, f \rangle.$

Both \cdot and \triangle extend the multiplication on A.

A is called **Arens regular** if \cdot and \triangle coincide on A^{**} .

E.g., every C^* -algebra is Arens regular.

For any fixed $m \in A^{**}$, the maps

$$n \longmapsto n \cdot m$$
 and $n \longmapsto m \triangle n$

are weak*-weak* continuous on A^{**} .

The **left** and the **right topological centres** of A^{**} are defined as

$$Z_t^{(l)}(A^{**}) = \{m \in A^{**} : n \longmapsto m \cdot n \text{ is } \mathsf{w}^*\text{-}\mathsf{w}^* \text{ continuous}\},$$

$$Z_t^{(r)}(A^{**}) = \{ m \in A^{**} : n \longmapsto n \triangle m \text{ is } \mathbf{w}^* \text{-} \mathbf{w}^* \text{ continuous} \}.$$

Then
$$A \subseteq Z_t^{(l)}(A^{**}), Z_t^{(r)}(A^{**}) \subseteq A^{**}.$$

- A is Arens regular \iff $[Z_t^{(l)}(A^{**}) = Z_t^{(r)}(A^{**}) = A^{**}].$
- A is called **left (right) strongly Arens irregular** if $Z_t^{(l)}(A^{**}) = A \ (Z_t^{(r)}(A^{**}) = A) \ (\textbf{Dales-Lau} \ 05).$

E.g., for all locally compact groups G, $L_1(G)$ is strongly Arens irregular (**Lau-Losert** 88).

Multipliers and strong Arens irregularity.

Theorem 6 (**H.-Neufang-Ruan**). Let A be a Banach algebra.

- (i) If A is of type (LM), then A is left strongly Arens irreg. $\iff [Z_t^{(l)}(A^{**})\cdot A\subseteq A].$
- (ii) If A is of type (RM), then A is right strongly Arens irreg. $\iff [A \cdot Z_t^{(r)}(A^{**}) \subseteq A]$.

In particular, A is strongly Arens irregular if A is of type (M) and an ideal in A^{**} .

Corollary 7 (H.-Neufang-Ruan).

Let \mathcal{G} be a co-amenable compact quantum group. If either $L_1(\mathcal{G})$ is separable or $L_1(\mathcal{G})$ has a central BAI, then $L_1(\mathcal{G})$ is strongly Arens irregular.

Corollary 7 was proved when

- (i) $L_1(\mathcal{G}) = L_1(G)$ of compact groups G by **Işik-Pym-** Ülger (87);
- (ii) $L_1(\mathcal{G}) = A(G)$ of amenable discrete groups G by Lau-Losert (93).

Remarks.

- (a) Theorem 6(i) was proved by Lau-Ülger (96) for WSC Banach algebras A with a sequential BAI.
- (b) Theorem 6(i) was also proved by Baker-Lau-Pym(98) under the following condition:
 - A is WSC with a BAI and A is a right ideal in A^{**} .