\mathbb{Z}^2 -actions on UHF algebras

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University

November 16, 2007 Workshop on Structure of C*-Algebras Fields Institute, Toronto joint work with T. Katsura

Cocycle conjugacy

Definition

Let $\alpha:G\curvearrowright A$ be an action of a countable discrete group G on a unital C^* -algebra A.

 $\{u_g\}_{g\in G}\subset U(A)$ is called an lpha-cocycle, if

$$u_g \alpha_g(u_h) = u_{gh} \quad \forall g, h \in G.$$

Two actions $\alpha, \beta: G \curvearrowright A$ are said to be cocycle conjugate, if

$$\exists \gamma \in \operatorname{Aut}(A), \quad \exists \{u_g\}_g \ \alpha\text{-cocycle}$$

$$\operatorname{Ad} u_q \circ \alpha_q = \gamma \circ \beta_q \circ \gamma^{-1} \quad \forall g \in G.$$

Uniform outerness

Definition (Kishimoto 1996)

 $\alpha \in \operatorname{Aut}(A)$ is said to be uniformly outer, if

$$\forall a \in A, \ \forall \text{non-zero projection} \ p \in A, \ \forall \varepsilon > 0$$

$$\exists \mathsf{projections}\ p_1, p_2, \dots, p_n \in A$$

$$p = \sum_{i=1}^{n} p_i, \quad ||p_i a \alpha(p_i)|| < \varepsilon \quad \forall i.$$

- · If α is uniformly outer, then for any α -invariant tracial state τ , the extension $\bar{\alpha}$ on $\pi_{\tau}(A)''$ is outer.
- \cdot If A is purely infinite simple, then outerness implies uniform outerness.

Main theorem

 $\alpha:G\curvearrowright A$ is said to be uniformly outer, if α_g is uniformly outer for all $g\in G\setminus\{e\}$.

Theorem (Katsura-M 2007)

Let A be a UHF algebra and let $\alpha, \beta : \mathbb{Z}^2 \curvearrowright A$ be uniformly outer actions.

Then, α and β are cocycle conjugate if and only if $[\alpha] = [\beta]$.

Corollary

If A is of infinite type, i.e. $A \cong A \otimes A$, then any uniformly outer actions of \mathbb{Z}^2 are cocycle conjugate to each other.

Background

- · (Connes, Jones, Ocneanu 1980's)
 If $\alpha, \beta: G \curvearrowright R$ are outer actions of an amenable group G on the AFD II₁-factor R, then α is cocycle conjugate to β .
- (Herman-Ocneanu 1984)
 Rohlin property and stability of single automorphisms of AF-algebras.
- (Bratteli-Kishimoto-Rørdam-Størmer 1993) Rohlin property of the shift automorphism of $\mathsf{UHF}(2^\infty)$.
- (Evans-Kishimoto 1997)
 EK intertwining argument and classification of automorphisms of AF algebras with the Rohlin property.

Classification of \mathbb{Z} -action

Theorem (Kishimoto 1998)

Let A be a unital simple AT algebra of real rank zero with unique tracial state τ and let $\alpha \in \operatorname{Aut}(A)$ be approximately inner. Then, the following are equivalent.

- ullet lpha has the Rohlin property.
- α^m is uniformly outer for all $m \in \mathbb{N}$.
- $\bar{\alpha}^m$ on $\pi_{\tau}(A)''$ is outer for all $m \in \mathbb{N}$.

Theorem (Kishimoto 1998)

Let A be a unital AT algebra of real rank zero. If $\alpha, \beta \in \operatorname{Aut}(A)$ have the Rohlin property and $\alpha\beta^{-1}$ is asymptotically inner, then α is cocycle conjugate to β .

Rohlin property for \mathbb{Z}^2 -action (1)

$$\xi_1 = (1,0), \ \xi_2 = (0,1) \in \mathbb{Z}^2$$

We let $A^{\infty} = \ell^{\infty}(\mathbb{N}, A)/c_0(\mathbb{N}, A)$ and $A_{\infty} = A^{\infty} \cap A'$.

Definition (Nakamura 1999)

 $\alpha: \mathbb{Z}^2 \curvearrowright A$ is said to have the Rohlin property, if for any $M \in \mathbb{N}$, there exist $R \in \mathbb{N}$, $m_r \in \mathbb{N}^2$ (r = 1, 2, ..., R) and

projections
$$e_g^{(r)} \in A_{\infty}$$
 $(r = 1, 2, ..., R, g \in \mathbb{Z}^2/m_r\mathbb{Z}^2)$

such that

$$m_r \ge M$$
, $\sum_{r,q} e_g^{(r)} = 1$, $\alpha_{\xi_i}(e_g^{(r)}) = e_{g+\xi_i}^{(r)}$ $(i = 1, 2)$.

Rohlin property for \mathbb{Z}^2 -action (2)

Theorem (Nakamura 1999)

Let A be a UHF algebra. For a \mathbb{Z}^2 -action $\alpha: \mathbb{Z}^2 \curvearrowright A$, the following are equivalent.

- ullet lpha has the Rohlin property.
- α is uniformly outer.

Theorem (Nakamura 1999)

Let A be a UHF algebra of infinite type. Any two uniformly outer \mathbb{Z}^2 -actions of product type on A are cocycle conjugate to each other.

What is stability?

We would like to compare two actions $\alpha, \beta: G \curvearrowright A$. Suppose that there exists an α -cocycle $\{u_q\}_{q \in G}$ in A^{∞} such that

$$\beta_q(a) = \operatorname{Ad} u_q \circ \alpha_q(a) \quad \forall a \in A, \ g \in G.$$

Stability of α implies there exists a unitary $v \in A^{\infty}$ such that

$$u_g = v\alpha_g(v^*) \quad \forall \ g \in G.$$

Then, we would have

$$\beta_g(a) = \operatorname{Ad} v \circ \alpha_g(a) \circ \operatorname{Ad} v^*(a) \quad \forall a \in A, \ g \in G,$$

which may induce 'conjugacy' between α and β .

Stability for \mathbb{Z} -action

An automorphism $\alpha\in {\rm Aut}(A)$ with the Rohlin property, a unitary $u\in A$ and $\varepsilon>0$ are given.

We wish to find $v \in A$ such that $||u - v\alpha(v^*)|| < \varepsilon$.

von-Neumann algebras setting: $v = \sum_{k=0}^{n} u_k e_k$, where $e_0, e_1, \ldots, e_{n-1}$ are Rohlin projections for α and u_k is determined by $u_0 = 1$ and $u_k = u\alpha(u_{k-1})$.

In C^* -algebras setting, we need 'adjustment term'.

$$v = \sum_{k=0}^{n-1} u_k \alpha^k(w_k) e_k$$

 w_k 's are unitaries satisfying $w_k \approx w_{k-1}$, $w_0 \approx u_n$, $w_{n-1} \approx 1$, They are obtained by a path from u_n to 1.

Stability for \mathbb{Z}^2 -action (1)

We are given an action $\alpha: \mathbb{Z}^2 \curvearrowright A$ with the Rohlin property and an α -cocycle $\{u_n\}_{n\in\mathbb{Z}^2}$ in A (or A^{∞}).

Let $e_{(i,j)}$ $(0 \le i < k, \ 0 \le j < l)$ be Rohlin projections and put

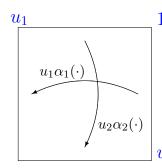
$$v = \sum_{i=0}^{k-1} \sum_{j=0}^{l-1} u_{(i,j)} \alpha_{(i,j)}(w_{(i,j)}) e_{(i,j)}.$$

In order to obtain $||u_{\xi_i} - v\alpha_{\xi_i}(v^*)|| < \varepsilon$ (i = 1, 2), we need

$$\begin{split} \|w_{(i,j)} - w_{(i+1,j)}\| &< \varepsilon, \quad \|w_{(i,j)} - w_{(i,j+1)}\| < \varepsilon, \\ \|w_{(0,j)} - u_{(k,0)}\alpha_{(k,0)}(w_{(k-1,j)})\| &< \varepsilon, \\ \|w_{(i,0)} - u_{(0,l)}\alpha_{(0,l)}(w_{(i,l-1)})\| &< \varepsilon. \end{split}$$

Stability for \mathbb{Z}^2 -action (2)

To simplify notation, we denote $\alpha_{(k,0)}$, $\alpha_{(0,l)}$, $u_{(k,0)}$, $u_{(0,l)}$ by α_1 , α_2 , u_1 , u_2 . Note that we have $u_1\alpha_1(u_2)=u_2\alpha_2(u_1)$.



How do we define a continuous map from $[0,1] \times [0,1]$ to U(A) ?

Can we extend unitaries on the boundary to the whole square ?

$$-\kappa \in K_1(SA) \cong K_0(A).$$

- Lipschitz continuity.

Homotopy lemma

Lemma

For any C>0 and $\varepsilon>0$, there exists C'>0 such that: For any $n\in\mathbb{N}$ and $u:[0,1]\to U(M_n)$ with

- u(0) = u(1) = 1,
- · $\operatorname{Lip}(u) \leq C$,
- · $[u] \in K_1(C_0(0,1) \otimes M_n) \cong K_0(M_n)$ is zero,

there exists a path of self-adjoint elements $a:[0,1]\to M_n$ satisfying the following.

- $||u(t) e^{2\pi\sqrt{-1}a(t)}|| < \varepsilon$ for all $t \in [0, 1]$.
- a(0) = a(1) = 0.
- $\operatorname{Lip}(a) \leq C'$.

Preliminary

Let A be a UHF algebra. For each prime number p, we put

$$\zeta(p) = \sup\{k \in \mathbb{N} \cup \{0\} \mid [1] \text{ is divisible by } p^k \text{ in } K_0(A)\}$$
$$\in \{0, 1, 2, \dots, \infty\}.$$

For a \mathbb{Z}^2 -action α on A, the invariant $[\alpha]$ will be defined as an element in

$$\prod_{p \in P(A)} \mathbb{Z}/p^{\zeta(p)}\mathbb{Z},$$

where
$$P(A) = \{p \mid 1 \le \zeta(p) < \infty\}.$$

Note that A is of infinite type, i.e. $A\cong A\otimes A$ if and only if P(A) is empty.

Invariant (1)

Let α, β be two \mathbb{Z}^2 -actions on A.

Take $p \in P(A)$ and let $A_0 \subset A$ be a unital subalgebra which is isomorphic to $M_{n^{\zeta(p)}}(\mathbb{C})$.

Choose a finite dimensional subalgebra $A_1 \subset A$ sufficiently large. For each i=1,2, we can find $u_i \in U(A)$ such that

$$\beta_i(a) = \operatorname{Ad} u_i \circ \alpha_i(a) \quad \forall a \in A_1.$$

Then, $x=u_1\alpha_1(u_2)(u_2\alpha_2(u_1))^*$ almost commutes with A_0 . Take a path of unitaries $h:[0,1]\to U(A)$ from 1 to x, which is almost contained in $A\cap A_0'$. We may assume h is piecewise smooth.

Invariant (2)

Compute

$$\delta = \frac{1}{2\pi\sqrt{-1}} \int_0^1 \tau(\dot{h}(t)h(t)^*) dt,$$

where τ is the unique tracial state on A.

- $\Delta_{\tau}(x) = \Delta_{\tau}(u_1\alpha_1(u_2)(u_2\alpha_2(u_1))^*) = 0$, where $\Delta_{\tau}: U(A) \to \mathbb{R}/\tau_*(K_0(A))$ is the de la Harpe-Skandalis determinant.
- So, this value δ belongs to $\tau_*(K_0(A))$.
- · If we take another path k from 1 to x, then by connecting h and k, we obtain a closed path which is almost contained in $A \cap A'_0$.
- $K_0(A)/K_0(A \cap A_0')$ is isomorphic to $\mathbb{Z}/p^{\zeta(p)}\mathbb{Z}$.

We let $[\beta, \alpha](p) \in \mathbb{Z}/p^{\zeta(p)}\mathbb{Z}$ be this value mod $\tau_*(K_0(A \cap A_0'))$.

Invariant (3)

We let

$$[\beta, \alpha] \in \prod_{p \in P(A)} \mathbb{Z}/p^{\zeta(p)}\mathbb{Z}$$

be the collection of all $[\beta, \alpha](p)$.

Lemma

In the setting above,

- $[\beta, \alpha](p)$ does not depend on the choice of A_0 , A_1 , $u_i \in U(A)$ and $h: [0, 1] \to U(A)$,
- $\bullet \quad [\gamma,\alpha] = [\gamma,\beta] + [\beta,\alpha].$

Define $[\alpha] = [\alpha, id]$.

Our main theorem claims that $[\alpha]$ is the complete invariant for cocycle conjugacy of uniformly outer \mathbb{Z}^2 -actions on the UHF algebra A.

Example

Let $A=M_2\otimes M_3\otimes M_5\otimes M_7\otimes M_{11}\otimes\ldots$ and let $\lambda\in\prod_p\mathbb{Z}/p\mathbb{Z}.$

For each prime number p, choose unitaries u_p, v_p in ${\cal M}_p$ satisfying

$$u_p v_p = e^{2\pi\sqrt{-1}\lambda(p)/p} v_p u_p.$$

Define $\alpha:\mathbb{Z}^2 \curvearrowright A$ by

$$\alpha_{\xi_1} = \bigotimes_p \operatorname{Ad} u_p \text{ and } \alpha_{\xi_2} = \bigotimes_p \operatorname{Ad} v_p.$$

Then we have $[\alpha] = \lambda$.

If $\{p\mid \lambda(p)\neq 0\}$ is an infinite set, then the action α possesses the Rohlin property automatically (Nakamura 1999).

If $\lambda(p)=0$ for all but finitely many p, then we have to choose u_p,v_p carefully in order to make α possess the Rohlin property.

Intertwining argument (1)

Theorem (Katsura-M 2007)

Let A be a UHF algebra and let $\alpha, \beta : \mathbb{Z}^2 \curvearrowright A$ be uniformly outer actions. Then, α and β are cocycle conjugate if and only if $[\alpha] = [\beta]$.

We wish to show that $[\alpha] = [\beta]$ implies cocycle conjugacy, by using the Evans-Kishimoto intertwining argument.

Choose an increasing family of finite subsets F_1, F_2, \ldots of A whose union is dense in A. Let $\delta_1 > \delta_2 > \ldots$ be a decreasing sequence of positive real numbers with $\delta_n \to 0$.

We will construct \mathbb{Z}^2 -actions $\alpha^{(0)}, \beta^{(1)}, \alpha^{(2)}, \beta^{(3)}, \ldots$ on A, cocycles $u^{(0)}, u^{(1)}, u^{(2)}, \ldots$ and unitaries v_0, v_1, v_2, \ldots

Intertwining argument (2)

Put $\alpha^{(0)}=\alpha$ and $\beta^{(1)}=\beta.$ We can find an $\alpha^{(0)}$ -cocycle $u^{(0)}$ such that

$$\|\beta_i^{(1)}(x) - \operatorname{Ad} u_i^{(0)} \circ \alpha_i^{(0)}(x)\| < \delta_1 \quad \forall x \in F_1, \ \forall i = 1, 2.$$

Let $\alpha^{(2)}$ be the perturbed action of $\alpha^{(0)}$ by $u^{(0)}$, that is, $\alpha^{(2)}=\operatorname{Ad} u^{(0)}\circ\alpha^{(0)}.$

We can find a $\beta^{(1)}$ -cocycle $u^{(1)}$ such that

$$\|\alpha_i^{(2)}(x) - \operatorname{Ad} u_i^{(1)} \circ \beta_i^{(1)}(x)\| < \delta_2 \quad \forall x \in F_2, \ \forall i = 1, 2.$$

Let $\beta^{(3)}$ be the perturbed action of $\beta^{(1)}$ by $u^{(1)}$, that is, $\beta^{(3)}=\operatorname{Ad} u^{(1)}\circ\beta^{(1)}.$

Note $||[u_i^{(1)}, \beta_i^{(1)}(x)]|| < \delta_1 + \delta_2$ for $x \in F_1$ and i = 1, 2.

Intertwining argument (3)

We can find an $\alpha^{(2)}$ -cocycle $u^{(2)}$ such that

$$\|\beta_i^{(3)}(x) - \operatorname{Ad} u_i^{(2)} \circ \alpha_i^{(2)}(x)\| < \delta_3 \quad \forall x \in F_3, \ \forall i = 1, 2.$$

Let $\alpha^{(4)}$ be the perturbed action of $\alpha^{(2)}$ by $u^{(2)}$, that is, $\alpha^{(4)} = \operatorname{Ad} u^{(2)} \circ \alpha^{(2)}$.

Note $\|[u_i^{(2)}, \alpha_i^{(2)}(x)]\| < \delta_2 + \delta_3$ for $x \in F_2$ and i = 1, 2.

In such a way, we obtain

$$\operatorname{Ad}(u^{(2k+1)}u^{(2k-1)}\dots u^{(1)})\circ\beta\approx\operatorname{Ad}(u^{(2k)}u^{(2k-2)}\dots u^{(0)})\circ\alpha.$$

In each step, we apply the stability to the cocycles $u^{(k)}$ and get

$$\|u_i^{(k)} - v_k \beta_i^{(k)}(v_k^*)\| < 2^{-k} \text{ and } \|u_i^{(k)} - v_k \alpha_i^{(k)}(v_k^*)\| < 2^{-k}.$$

Intertwining argument (4)

'Centrality' of $u^{(k)}$ implies 'centrality' of the unitaries v_k . Hence

$$\gamma_1 = \lim_{k \to \infty} \operatorname{Ad}(v_{2k+1}v_{2k-1}\dots v_1)$$

and

$$\gamma_0 = \lim_{k \to \infty} \operatorname{Ad}(v_{2k}v_{2k-2}\dots v_0)$$

exist in Aut(A).

Consequently we obtain

$$\operatorname{Ad} w_i^{(1)} \circ \gamma_1 \circ \beta_i \circ \gamma_1^{-1} = \operatorname{Ad} w_i^{(0)} \circ \gamma_0 \circ \alpha_i \circ \gamma_0^{-1} \quad \forall i = 1, 2$$

for some cocycles $w^{(0)}, w^{(1)}$, thereby completing the proof.

Remark

- · Two uniformly outer \mathbb{Z}^2 -actions α, β on a UHF algebra A are outer conjugate if and only if $[\alpha](p) = [\beta](p)$ for all but finitely many $p \in P(A)$.
- · In a similar fashion, we can prove the following: Any outer actions of \mathbb{Z}^N on the Cuntz algebra \mathcal{O}_2 are cocycle conjugate to each other.

Problem

Let A be a UHF algebra of infinite type and let $\alpha, \beta : \mathbb{Z}^N \curvearrowright A$ be uniformly outer actions. Are they cocycle conjugate ?