On the non-commutative G-C. Rota dilation theorem

Claire Anantharaman-Delaroche

Workshop on von Neumann algebras November 2, 2007

4□ > 4□ > 4 Ē > 4 Ē > Ē 900

Definition

A Markov operator is a normal unital positive map $P: L^{\infty}(X, \mu) \leftarrow$

It is defined by a transition kernel p:

$$P(f)(x) = \int_X f(y)p(x, dy)$$

Definition

A Markov operator is a normal unital positive map $P: L^{\infty}(X, \mu) \leftarrow$

It is defined by a transition kernel p:

$$P(f)(x) = \int_X f(y)p(x, dy)$$

Markov process associated with P:

Definition

A Markov operator is a normal unital positive map $P: L^{\infty}(X, \mu) \leftarrow$

It is defined by a transition kernel p:

$$P(f)(x) = \int_X f(y)p(x, dy)$$

- Markov process associated with P:
 - $\Omega = X^{\mathbb{N}}$; $X_n : (x_k) \mapsto x_n$.
 - ν Markov measure : $\nu(f_0 \circ X_0 f_1 \circ X_1 \cdots f_n \circ X_n)$

$$=\int_X d\mu(x_0)f_0(x_0)P\Big(\cdots P\Big(P\big(P(f_n)f_{n-1}\big)f_{n-2}\Big)\cdots f_1\Big)(x_0)$$

Definition

A Markov operator is a normal unital positive map $P: L^{\infty}(X, \mu) \leftarrow$

It is defined by a transition kernel p:

$$P(f)(x) = \int_X f(y)p(x, dy)$$

- Markov process associated with P:
 - $\Omega = X^{\mathbb{N}}$; $X_n : (x_k) \mapsto x_n$.
 - ν Markov measure : $\nu(f_0 \circ X_0 f_1 \circ X_1 \cdots f_n \circ X_n)$

$$=\int_X d\mu(x_0)f_0(x_0)P\Big(\cdots P\Big(P\big(P(f_n)f_{n-1}\big)f_{n-2}\Big)\dots f_1\Big)(x_0)$$

• Time evolution : shift β on the path space $\Omega = X^{\mathbb{N}}$.

Definition

A Markov operator is a normal unital positive map $P: L^{\infty}(X, \mu) \leftarrow$

It is defined by a transition kernel p:

$$P(f)(x) = \int_X f(y)p(x, dy)$$

- Markov process associated with P:
 - $\Omega = X^{\mathbb{N}}$; $X_n : (x_k) \mapsto x_n$.
 - ν Markov measure : $\nu(f_0 \circ X_0 f_1 \circ X_1 \cdots f_n \circ X_n)$

$$=\int_X d\mu(x_0)f_0(x_0)P\Big(\cdots P\Big(P\big(P(f_n)f_{n-1}\big)f_{n-2}\Big)\dots f_1\Big)(x_0)$$

• Time evolution : shift β on the path space $\Omega = X^{\mathbb{N}}$.

 ν is such that the distribution of X_n is $\mu P^n: f \mapsto \int_X P^n(f)(x) d\mu(x)$.

Reformulation of the construction : Set $\mu_0 = \mu$, $N = N_{0l} = L^{\infty}(X, \mu_0)$.

Reformulation of the construction : Set $\mu_0 = \mu$, $N = N_{01} = L^{\infty}(X, \mu_0)$.

ullet First step : on $X \times X$ defines the measure μ_1 by

$$\int f(x_0,x_1)d\mu_1(x_0,x_1) = \int f(x_0,x_1)p(x_0,dx_1)d\mu_0(x_0)$$

Set
$$N_{1]} = L^{\infty}(X \times X, \mu_1),$$

 $\alpha_1(f)(x_0, x_1) = f(x_0), \quad \beta_1(f)(x_0, x_1) = f(x_1).$

Reformulation of the construction : Set $\mu_0 = \mu$, $N = N_{01} = L^{\infty}(X, \mu_0)$.

ullet First step : on $X \times X$ defines the measure μ_1 by

$$\int f(x_0,x_1)d\mu_1(x_0,x_1) = \int f(x_0,x_1)p(x_0,dx_1)d\mu_0(x_0)$$

Set
$$N_{1]} = L^{\infty}(X \times X, \mu_1),$$

 $\alpha_1(f)(x_0, x_1) = f(x_0), \quad \beta_1(f)(x_0, x_1) = f(x_1).$

ullet Second step : on X imes X imes X defines μ_2 by

$$\int f(x_0,x_1,x_2)d\mu_2(x_0,x_1,x_2) = \int \Big(\int f(x_0,x_1,x_2)p(x_1,dx_2)\Big)d\mu_1(x_0,x_1).$$

Set
$$N_{2]} = L^{\infty}(X \times X \times X, \mu_{2}),$$

 $\alpha_{2}(f)(x_{0}, x_{1}, x_{3}) = f(x_{0}, x_{1}), \quad \beta_{2}(f)(x_{0}, x_{1}, x_{2}) = f(x_{1}, x_{2}),$

and so on....

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ からで

 $M = L^{\infty}(\Omega, \nu)$ is $\lim_{\longrightarrow} N_{n]}$ with respect to the embeddings α_n . The time evolution β is deduced from the β_n 's.

 $M = L^{\infty}(\Omega, \nu)$ is $\lim N_{n}$ with respect to the embeddings α_n .

The time evolution β is deduced from the β_n 's.

We denote by $J_0: N = N_{0]} \to M$ the embedding $f \mapsto f \circ X_0$ and set $J_n = \beta^n \circ J_0: f \mapsto f \circ X_n$. Let $\mathbb{E}_{n]}$ be the canonical conditional expectation from M onto the algebra $N_{n]}$ which represent the past of time n. One has:

 $M = L^{\infty}(\Omega, \nu)$ is $\lim N_{n}$ with respect to the embeddings α_n .

The time evolution β is deduced from the β_n 's.

We denote by $J_0: N=N_{0]}\to M$ the embedding $f\mapsto f\circ X_0$ and set $J_n=\beta^n\circ J_0: f\mapsto f\circ X_n$. Let $\mathbb{E}_{n]}$ be the canonical conditional expectation from M onto the algebra $N_{n]}$ which represent the past of time n. One has:

(1)
$$\beta^p \circ \mathbb{E}_{q} = \mathbb{E}_{(p+q)} \circ \beta^p$$

Covariance property

$$(2) \mathbb{E}_{n} \circ J_q = J_n \circ P^{q-n}$$

Markov property

 $M = L^{\infty}(\Omega, \nu)$ is $\lim N_{n}$ with respect to the embeddings α_n .

The time evolution β is deduced from the β_n 's.

We denote by $J_0: N=N_{0]}\to M$ the embedding $f\mapsto f\circ X_0$ and set $J_n=\beta^n\circ J_0: f\mapsto f\circ X_n$. Let $\mathbb{E}_{n]}$ be the canonical conditional expectation from M onto the algebra $N_{n]}$ which represent the past of time n. One has:

(1)
$$\beta^p \circ \mathbb{E}_{q} = \mathbb{E}_{(p+q)} \circ \beta^p$$

Covariance property

(2)
$$\mathbb{E}_{n} \circ J_q = J_n \circ P^{q-n}$$

Markov property

Condition (1) for q=0 gives $\mathbb{E}_{p]}(N_{[p})=J_p(N)$ where $N_{[n}=\bigvee\{J_k(N),k\geq n\}$ is the future of time $n,J_n(N)$ being the present at time n.

II Quantum Markov processes

Definition

Let N be a von Neumann algebra. A Markov operator is a normal unital completely positive map $P: N \hookrightarrow$

II Quantum Markov processes

Definition

Let N be a von Neumann algebra. A Markov operator is a normal unital completely positive map $P: N \hookrightarrow$

Definition

A quantum Markov process with "state space N" is a vN algebra M with

- a time evolution endomorphism $\beta: M \to M$;
- a normal injective homomorphism J_0 from N into M:
- normal conditional expectations $\mathbb{E}_{n]}$ from M onto $N_{n]} = \bigvee \{J_k(N) : k \leq n\}, J_k = \beta^k \circ J_0,$

such that

$$\forall n$$
, $\mathbb{E}_{n}(N_n) \subset J_n(N)$.

Markov dilation problem

Given a Markov operator $P: N \longleftrightarrow$, construct a quantum Markov process such that

$$\forall n, \quad \mathbb{E}_{0]} \circ J_n = \mathbb{E}_{0]} \circ \beta^n \circ J_0 = J_0 \circ P^n.$$

Markov dilation problem

Given a Markov operator $P: N \leftarrow$, construct a quantum Markov process such that

$$\forall n$$
, $\mathbb{E}_{0} \circ J_n = \mathbb{E}_{0} \circ \beta^n \circ J_0 = J_0 \circ P^n$.

Theorem, Sauvageot (1986)

Let $P: N \hookrightarrow$ be a Markov operator. There exists a Markov quantum process $(M, \beta, J_0, (\mathbb{E}_{n}])_{n \geq 0}$ such that

- (1) $\mathbb{E}_{n]} \circ \mathbb{E}_{q]} = \mathbb{E}_{n]}$, for $n \leq q$;
- (2) $\beta^p \circ \mathbb{E}_{q} = \mathbb{E}_{(p+q)} \circ \beta^p$
- $(3) \mathbb{E}_{n]} \circ J_q = J_n \circ P^{q-n}$

Markov dilation problem

Given a Markov operator $P: N \hookrightarrow$, construct a quantum Markov process such that

$$\forall n$$
, $\mathbb{E}_{0} \circ J_n = \mathbb{E}_{0} \circ \beta^n \circ J_0 = J_0 \circ P^n$.

Theorem, Sauvageot (1986)

Let $P: N \longleftrightarrow$ be a Markov operator. There exists a Markov quantum process $(M, \beta, J_0, (\mathbb{E}_{n}])_{n \ge 0}$ such that

- (1) $\mathbb{E}_{n} \circ \mathbb{E}_{q} = \mathbb{E}_{n}$, for $n \leq q$;
- (2) $\beta^p \circ \mathbb{E}_{q} = \mathbb{E}_{(p+q)} \circ \beta^p$
- $\textbf{(3)} \ \mathbb{E}_{n} \circ J_q = J_n \circ P^{q-n}$

The construction is not at all straightforward. It is a combination of the Stinespring dilation construction and of free products constructions.

In the commutative case the first step is indeed the Stinespring construction.

- $L^2(X \times X, \mu_1) = H_P$, the Hilbert space of the Stinespring construction.
- $\beta_1(g)f_1 \otimes f_0 = gf_1 \otimes f_0$
- $\alpha_1(g)f_1 \otimes f_0 = f_1 \otimes gf_0$
- $N_{1]} = L^{\infty}(X \times X, \mu_1)$ is the von Neumann algebra generated by $\alpha_1(L^{\infty}(X)) \cup \beta_1(L^{\infty}(X))$.

In the commutative case the first step is indeed the Stinespring construction.

- $L^2(X \times X, \mu_1) = H_P$, the Hilbert space of the Stinespring construction.
- $\beta_1(g)f_1 \otimes f_0 = gf_1 \otimes f_0$
- $\alpha_1(g)f_1 \otimes f_0 = f_1 \otimes gf_0$
- $N_{1]} = L^{\infty}(X \times X, \mu_1)$ is the von Neumann algebra generated by $\alpha_1(L^{\infty}(X)) \cup \beta_1(L^{\infty}(X))$.

 α_1 is measure preserving, and denoting by \mathbb{E} the corresponding conditional expectation, we have $\alpha_1 \circ P = \mathbb{E} \circ \beta_1$.

In the commutative case the first step is indeed the Stinespring construction.

- $L^2(X \times X, \mu_1) = H_P$, the Hilbert space of the Stinespring construction.
- $\beta_1(g)f_1 \otimes f_0 = gf_1 \otimes f_0$
- $\alpha_1(g)f_1 \otimes f_0 = f_1 \otimes gf_0$
- $N_{1]} = L^{\infty}(X \times X, \mu_1)$ is the von Neumann algebra generated by $\alpha_1(L^{\infty}(X)) \cup \beta_1(L^{\infty}(X))$.

 α_1 is measure preserving, and denoting by \mathbb{E} the corresponding conditional expectation, we have $\alpha_1 \circ P = \mathbb{E} \circ \beta_1$.

In the non-commutative case, α_1 cannot be defined. The Stinespring construction gives $P = V^*\beta_1(\cdot)V$, where V is the canonical isometry from $L^2(N)$ into H_P .

Theorem, Evans (1978)

Let $P: N \longleftrightarrow$ be a Markov operator. There exist a von Neumann algebra $M \supset N$, a conditional expectation $\mathbb{E}: M \to N$, and an injective endomorphism β of M such that for all $n \ge 1$,

$$P^n = \mathbb{E} \circ \beta^n \circ i$$

where i is the inclusion from N into M.

Let $P: L^{\infty}(X, \mu) \leftarrow$ be a classical Markov operator. One says that μ is P-stationary if $\mu P = \mu$ that is $\int_X P(f)(x) d\mu(x) = \int_X f d\mu$.

Let $P: L^{\infty}(X, \mu) \longleftrightarrow$ be a classical Markov operator. One says that μ is P-stationary if $\mu P = \mu$ that is $\int_X P(f)(x) d\mu(x) = \int_X f d\mu$.

 μ is P-stationary if and only if the Markov measure ν on Ω is invariant under the shift β . In this case every J_n (and not only J_0) is measure preserving.

Let $P: L^{\infty}(X, \mu) \longleftrightarrow$ be a classical Markov operator. One says that μ is P-stationary if $\mu P = \mu$ that is $\int_X P(f)(x) d\mu(x) = \int_X f d\mu$.

 μ is *P*-stationary if and only if the Markov measure ν on Ω is invariant under the shift β . In this case every J_n (and not only J_0) is measure preserving.

If μ is P-stationary there exists a Markov map $P^*: L^\infty(X,\mu) \hookrightarrow$ such that $\int_X P(f)gd\mu = \int fP^*(g)d\mu$ for all $f,g \in L^\infty(X,\mu)$.

Let $P: L^{\infty}(X, \mu) \longleftrightarrow$ be a classical Markov operator. One says that μ is P-stationary if $\mu P = \mu$ that is $\int_X P(f)(x) d\mu(x) = \int_X f d\mu$.

 μ is *P*-stationary if and only if the Markov measure ν on Ω is invariant under the shift β . In this case every J_n (and not only J_0) is measure preserving.

If μ is P-stationary there exists a Markov map $P^*: L^\infty(X,\mu) \hookrightarrow$ such that $\int_X P(f)gd\mu = \int fP^*(g)d\mu$ for all $f,g \in L^\infty(X,\mu)$.

Indeed, since μ is P-stationary, the predual P_* satisfies $P_*(1)=1$, and $P_*(L^\infty(X))\subset L^\infty(X)$. $P^*=P_*$ restricted to $L^\infty(X)$

Let P be a μ -preserving Markov operator. Then for p>1 and $f\in L^p(X)$,

 $P^n(P^*)^n(f)$ converges almost everywhere.

Let P be a μ -preserving Markov operator. Then for p>1 and $f\in L^p(X)$,

 $P^n(P^*)^n(f)$ converges almost everywhere.

When $P = P^*$, we have Stein's theorem (1961) :

 $P^{2n}(f)$ converges almost everywhere.

Let P be a μ -preserving Markov operator. Then for p > 1 and $f \in L^p(X)$,

 $P^n(P^*)^n(f)$ converges almost everywhere.

When $P = P^*$, we have Stein's theorem (1961):

 $P^{2n}(f)$ converges almost everywhere.

Compare with the von Neumann-Birkoff ergodic theorem : For $f \in L^1(X)$,

$$\frac{1}{n}\sum_{k=1}^{n}P^{k}(f)$$

converges almost everywhere.

Let P be a μ -preserving Markov operator. Then for p>1 and $f\in L^p(X)$,

 $P^n(P^*)^n(f)$ converges almost everywhere.

When $P = P^*$, we have Stein's theorem (1961):

 $P^{2n}(f)$ converges almost everywhere.

Compare with the von Neumann-Birkoff ergodic theorem : For $f \in L^1(X)$,

$$\frac{1}{n}\sum_{k=1}^{n}P^{k}(f)$$

converges almost everywhere.

Ornstein counterexample (1969): Stein's result is not true for p = 1.

4 D > 4 D > 4 E > 4 E > E = 900

Idea of proof:

Idea of proof: Rota shows that

$$\mathbb{E}_{[n} \circ J_0 = J_n \circ (P^*)^n$$

where $\mathbb{E}_{[n]}$ is the conditional expectation onto $N_{[n]} = \bigvee \{J_k(N), k \geq n\}$

Idea of proof: Rota shows that

$$\mathbb{E}_{[n}\circ J_0=J_n\circ (P^\star)^n$$

where $\mathbb{E}_{[n]}$ is the conditional expectation onto $N_{[n]} = \bigvee \{J_k(N), k \geq n\}$ Using

$$\mathbb{E}_{0]} \circ J_n = J_0 \circ P^n$$

$$\mathbb{E}_{[n} \circ J_0 = J_n \circ (P^*)^n$$

one gets

$$J_0 \circ P^n \circ (P^*)^n = \mathbb{E}_{0]} \circ J_n \circ (P^*)^n = \mathbb{E}_{0]} \circ \mathbb{E}_{[n} \circ J_0$$
 (1)

One concludes by using the martingale convergence theorem.

Idea of proof : Rota shows that

$$\mathbb{E}_{[n}\circ J_0=J_n\circ (P^\star)^n$$

where $\mathbb{E}_{[n]}$ is the conditional expectation onto $N_{[n]} = \bigvee \{J_k(N), k \geq n\}$ Using

$$\mathbb{E}_{0]} \circ J_n = J_0 \circ P^n$$

$$\mathbb{E}_{[n} \circ J_0 = J_n \circ (P^*)^n$$

one gets

$$J_0 \circ P^n \circ (P^*)^n = \mathbb{E}_{0]} \circ J_n \circ (P^*)^n = \mathbb{E}_{0]} \circ \mathbb{E}_{[n} \circ J_0$$
 (1)

One concludes by using the martingale convergence theorem.

The equalities (1) are called Rota dilations. When $P = P^*$, one has

$$J_0 \circ P^{2n} = \mathbb{E}_{0} \circ \mathbb{E}_{[n} \circ J_0.$$

Compare with Markov dilations : $J_0 \circ P^n = \mathbb{E}_{0} \circ \beta^n \circ J_0$.

Back to the non-commutative case. ${\it N}$ is given with a normal faithful state φ .

Back to the non-commutative case. ${\it N}$ is given with a normal faithful state $\varphi.$

Proposition

Let $P: N \to N$ be a Markov operator. The following conditions are equivalent :

(1) There exists $P^*: N \hookrightarrow N$ such that for $a, b \in N$:

$$\varphi(P^*(a)b)=\varphi(aP(b)).$$

(2) $\varphi \circ P = \varphi$ and $\sigma_t^{\varphi} \circ P = P \circ \sigma_t^{\varphi}$.

Back to the non-commutative case. ${\it N}$ is given with a normal faithful state $\varphi.$

Proposition

Let $P: N \to N$ be a Markov operator. The following conditions are equivalent :

(1) There exists $P^*: N \hookrightarrow N$ such that for $a, b \in N$:

$$\varphi(P^*(a)b) = \varphi(aP(b)).$$

(2) $\varphi \circ P = \varphi$ and $\sigma_t^{\varphi} \circ P = P \circ \sigma_t^{\varphi}$.

When these conditions hold one says that P is φ -markovian.

Back to the non-commutative case. ${\it N}$ is given with a normal faithful state $\varphi.$

Proposition

Let $P: N \to N$ be a Markov operator. The following conditions are equivalent :

(1) There exists $P^*: N \leftarrow N$ such that for $a, b \in N$:

$$\varphi(P^*(a)b)=\varphi(aP(b)).$$

(2) $\varphi \circ P = \varphi$ and $\sigma_t^{\varphi} \circ P = P \circ \sigma_t^{\varphi}$.

When these conditions hold one says that P is φ -markovian.

Example: Normal φ -preserving injective endomorphisms α such that $\alpha(N)$ is invariant under the modular automorphism group of φ . Then $\alpha^* = \alpha^{-1} \circ \mathbb{E}$, where \mathbb{E} is the φ -preserving conditional expectation onto $\alpha(N)$.

Non-commutative Rota dilation problem:

Given a φ -markovian operator P, find a von Neumann algebra M with a faithful normal state Φ , a time evolution $\beta: M \longleftrightarrow$ and a normal injective homomorphism $J_0: N \to M$ such that

- β is Φ -markovian, J_0 is (φ, Φ) -markovian;
- If $\mathbb{E}_{n]}$ and $\mathbb{E}_{[n]}$ are respectively the canonical expectations on $N_{n]}$ and $N_{[n]}$ where

$$N_{n]} = \bigvee \{J_k(N), k \leq n\}, N_{[n} = \bigvee \{J_k(N), k \geq n\}, J_k = \beta^k \circ J_0,$$

then $(M, \beta, J_0, (\mathbb{E}_{n|})_{n \geq 0})$ is a quantum Markov process with

$$\mathbb{E}_{n]} \circ J_q = J_n \circ P^{q-n}$$

$$\mathbb{E}_{[n} \circ J_0 = J_n \circ (P^*)^n$$

Theorem, A-D (2005)

A φ -markovian operator admits a Rota dilation if and only if it is factorizable in the following sense :

Theorem, A-D (2005)

A φ -markovian operator admits a Rota dilation if and only if it is factorizable in the following sense :

There exist a von Neumann algebra $\mathcal N$ with a faithful normal state ψ , two (φ,ψ) -markovian injective homomorphisms $J_0,J_1:(N,\varphi)\to(\mathcal N,\psi)$ such that

$$P=J_0^{\star}\circ J_1$$

or equivalently, for all $a, b \in N$:

$$\varphi(P(a)b) = \psi(J_1(a)J_0(b))$$

Theorem, A-D (2005)

A φ -markovian operator admits a Rota dilation if and only if it is factorizable in the following sense :

There exist a von Neumann algebra $\mathcal N$ with a faithful normal state ψ , two (φ, ψ) -markovian injective homomorphisms $J_0, J_1: (N, \varphi) \to (\mathcal N, \psi)$ such that

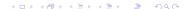
$$P=J_0^{\star}\circ J_1$$

or equivalently, for all $a, b \in N$:

$$\varphi(P(a)b) = \psi(J_1(a)J_0(b))$$

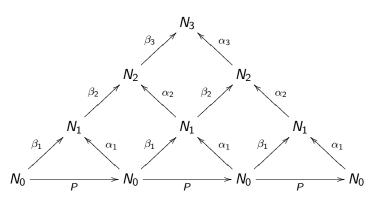
In one direction: obvious

$$J_0^{\star} = J_0^{-1} \circ \mathbb{E}_{0}$$
 and $\mathbb{E}_{0} \circ J_1 = J_0 \circ P \Rightarrow P = J_0^{\star} \circ J_1$



The other direction : Assume the existence of $\beta_1, \alpha_1 : N_0 \to N_1$ with $P = \alpha_1^{\star} \circ \beta_1$. Set $N_2 = N_1 *_{N_0} N_1$, $\alpha_2, \beta_2 : N_1 \to N_2$ the canonical embeddings, and inductively :

The other direction : Assume the existence of $\beta_1, \alpha_1 : N_0 \to N_1$ with $P = \alpha_1^\star \circ \beta_1$. Set $N_2 = N_1 *_{N_0} N_1$, $\alpha_2, \beta_2 : N_1 \to N_2$ the canonical embeddings, and inductively :



Set $(M, \Phi) = \underset{\longrightarrow}{\lim} (N_n, \varphi_n)$ with respect to the embeddings α_n . The time evolution is constructed from the β_n 's, J_0 is the embedding of $N = N_0$ into the inductive limit. Crucial relations : $\beta_n \circ \alpha_n^* = \alpha_{n+1}^* \circ \beta_{n+1}$.

Is every φ -markovian operator factorizable?

Is every φ -markovian operator factorizable?

 $\mathit{Markov}_{\varphi}(\mathit{N}) := \mathsf{the} \ \mathsf{convex} \ \mathsf{compact} \ \mathsf{space} \ \mathsf{of} \ \varphi\text{-markovian} \ \mathsf{maps}$ $\mathit{FMarkov}_{\varphi}(\mathit{N}) := \mathsf{the} \ \mathsf{subset} \ \mathsf{of} \ \mathsf{factorizable} \ \mathsf{maps}. \ \mathsf{It} \ \mathsf{is} \ \mathsf{stable} \ \mathsf{under}$

Convex combinations

Is every φ -markovian operator factorizable?

- Convex combinations
- Pointwise weak* limits

Is every φ -markovian operator factorizable?

- Convex combinations
- Pointwise weak* limits
- $P \mapsto P^*$

Is every φ -markovian operator factorizable?

- Convex combinations
- Pointwise weak* limits
- $P \mapsto P^*$
- Compositions

Is every φ -markovian operator factorizable?

- Convex combinations
- Pointwise weak* limits
- $P \mapsto P^*$
- Compositions
- One also has stability under free products.

Is every φ -markovian operator factorizable?

- Convex combinations
- Pointwise weak* limits
- $P \mapsto P^*$
- Compositions
- One also has stability under free products.
- $FMarkov_{\varphi}(N) \supset Aut_{\varphi}(N)$, the group of φ -preserving automorphisms.

Is every φ -markovian operator factorizable?

- Convex combinations
- Pointwise weak* limits
- $P \mapsto P^*$
- Compositions
- One also has stability under free products.
- $FMarkov_{\varphi}(N) \supset Aut_{\varphi}(N)$, the group of φ -preserving automorphisms.
- When N is abelian, every φ -markovian map is factorizable.

Particular case : $N = M_n(\mathbb{C})$, and φ is the canonical trace τ . τ -markovian maps are just normal completely positive maps preserving τ .

Particular case : $N=M_n(\mathbb{C})$, and φ is the canonical trace τ . τ -markovian maps are just normal completely positive maps preserving τ .

When n=2, the extreme points of $Markov_{\tau}(M_2(\mathbb{C}))$ are the automorphisms, and therefore every τ -markovian map is factorizable.

Particular case : $N=M_n(\mathbb{C})$, and φ is the canonical trace τ . τ -markovian maps are just normal completely positive maps preserving τ .

When n=2, the extreme points of $Markov_{\tau}(M_2(\mathbb{C}))$ are the automorphisms, and therefore every τ -markovian map is factorizable.

Kümmerer, 1983: Given any state φ on $M_2(\mathbb{C})$, any φ -markovian map on $M_2(\mathbb{C})$ is factorizable.

Particular case : $N=M_n(\mathbb{C})$, and φ is the canonical trace τ . τ -markovian maps are just normal completely positive maps preserving τ .

When n=2, the extreme points of $Markov_{\tau}(M_2(\mathbb{C}))$ are the automorphisms, and therefore every τ -markovian map is factorizable.

Kümmerer, 1983: Given any state φ on $M_2(\mathbb{C})$, any φ -markovian map on $M_2(\mathbb{C})$ is factorizable.

It is no longer true for $n \geq 3$ that the extreme points of $Markov_{\tau}(M_n(\mathbb{C}))$ are the automorphisms, and even in the simple case n=3, it is an open question whether every τ -markovian map is factorizable.

• $N = \mathcal{B}(\ell^2(I))$ with the state φ of diagonal density $D = \sum \lambda_i \theta_{e_i,e_j}$. We have $\lambda_i > 0$ and $\sum \lambda_i = 1$.

- $N = \mathcal{B}(\ell^2(I))$ with the state φ of diagonal density $D = \sum \lambda_i \theta_{e_i,e_i}$. We have $\lambda_i > 0$ and $\sum \lambda_i = 1$.
- $P = m_T$ is the Schur multiplier associated with a positive type kernel $T = (t_{i,i})$:

$$m_T([x_{i,j}]) = [t_{i,j}x_{i,j}].$$

Immediate verification : m_T is φ -markovian.

- $N = \mathcal{B}(\ell^2(I))$ with the state φ of diagonal density $D = \sum \lambda_i \theta_{e_i, e_i}$. We have $\lambda_i > 0$ and $\sum \lambda_i = 1$.
- $P = m_T$ is the Schur multiplier associated with a positive type kernel $T = (t_{i,i})$:

$$m_T([x_{i,j}]) = [t_{i,j}x_{i,j}].$$

Immediate verification : m_T is φ -markovian.

One assumes that the $t_{i,j}$'s are real, so that $m_T = m_T^{\star}$.

- $N = \mathcal{B}(\ell^2(I))$ with the state φ of diagonal density $D = \sum \lambda_i \theta_{e_i,e_i}$. We have $\lambda_i > 0$ and $\sum \lambda_i = 1$.
- $P = m_T$ is the Schur multiplier associated with a positive type kernel $T = (t_{i,i})$:

$$m_T([x_{i,j}]) = [t_{i,j}x_{i,j}].$$

Immediate verification : m_T is φ -markovian.

One assumes that the $t_{i,j}$'s are real, so that $m_T = m_T^{\star}$.

Theorem, Ricard (2007)

 m_{T} is factorizable.

Proof: Define a new scalar product on the real linear span of the e_i 's:

$$\langle \sum a_i e_i, \sum b_i e_i \rangle_{\mathcal{T}} = \sum a_i b_j t_{i,j}.$$

Let $\ell_{\mathcal{T}}^2$ be the real Hilbert space obtained after separation and completion.

Proof: Define a new scalar product on the real linear span of the e_i 's:

$$\langle \sum a_i e_i, \sum b_i e_i \rangle_T = \sum a_i b_j t_{i,j}.$$

Let ℓ_T^2 be the real Hilbert space obtained after separation and completion. The receptacle $\mathcal N$ for the embeddings J_0, J_1 is $\mathcal N = \mathcal B(\ell^2(I)) \otimes \Gamma_{-1}(\ell_T^2)$ where $\Gamma_{-1}(\ell_T^2)$ is the Fermion algebra constructed on $K = \ell_T^2$. For $e \in K$ let $\ell(e)$ be the creation operator on the antisymmetric Fock space

$$\mathcal{F}(K) = \mathbb{C}\Omega \oplus \bigoplus K_{\mathbb{C}}^{\wedge n}$$

given by

$$\ell(e)(k_1\otimes\cdots\otimes k_n)=e\otimes k_1\otimes\cdots\otimes k_n.$$

$$\Gamma_{-1}(K) = \{\omega(e) = \ell(e) + \ell(e)^*, e \in K\}''.$$

If e is a norm one vector in K, then $\omega(e)$ is self adjoint with $\omega(e)^2=1$ and

$$\forall e, f \in K, \quad \tau(\omega(e)\omega(f)) = \langle e, f \rangle_K.$$

If e is a norm one vector in K, then $\omega(e)$ is self adjoint with $\omega(e)^2=1$ and

$$\forall e, f \in K, \quad \tau(\omega(e)\omega(f)) = \langle e, f \rangle_K.$$

 $\mathcal{N}=\mathcal{B}(\ell^2(I))\otimes \Gamma_{-1}(\ell_T^2)$ is equipped with the state $\psi=\varphi\otimes \tau$. Let u be the diagonal unitary symmetry in \mathcal{N} with $\omega(e_i)$ as i-th entry. We define

$$J_1: \mathcal{N} = \mathcal{B}(\ell^2(I)) o \mathcal{N}, \quad ext{by} \quad J_1 = \operatorname{Id}_{\mathcal{N}} \otimes 1$$
 $J_0: \mathcal{N} o \mathcal{N}, ext{by} \quad J_0(a) = uJ_1(a)u.$

If e is a norm one vector in K, then $\omega(e)$ is self adjoint with $\omega(e)^2=1$ and

$$\forall e, f \in K, \quad \tau(\omega(e)\omega(f)) = \langle e, f \rangle_K.$$

 $\mathcal{N} = \mathcal{B}(\ell^2(I)) \otimes \Gamma_{-1}(\ell_T^2)$ is equipped with the state $\psi = \varphi \otimes \tau$. Let u be the diagonal unitary symmetry in \mathcal{N} with $\omega(e_i)$ as i-th entry. We define

$$J_1: \mathcal{N} = \mathcal{B}(\ell^2(I)) \to \mathcal{N}, \quad \text{by} \quad J_1 = \operatorname{Id}_{\mathcal{N}} \otimes 1$$

 $J_0: \mathcal{N} \to \mathcal{N}, \text{by} \quad J_0(a) = uJ_1(a)u.$

Verifications are straightforward. For instance

$$\begin{split} \psi(J_1(a)J_0(b)) &= \varphi \otimes \tau \big((a \otimes 1)u(b \otimes 1)u \big) \\ &= \varphi \otimes \tau \big((a_{i,j}1)(b_{i,j}\omega(e_i)\omega(e_j)) \big) \\ &= \sum_{i,j} \lambda_i a_{i,j} b_{j,i} \tau(\omega(e_i)\omega(e_j)) \\ &= \sum_{i,j} \lambda_i a_{i,j} b_{j,i} t_{i,j} = \varphi(m_T(a)b). \end{split}$$

Related case :

N = L(G), (G discrete group), equipped with its trace.

 $P=m_{arphi}$, Fourier multiplier, where arphi is a real-valued positive type function :

$$m_{\varphi}(\lambda(g)) = \varphi(g)\lambda(g).$$

Related case :

N = L(G), (G discrete group), equipped with its trace.

 $P=m_{arphi}$, Fourier multiplier, where arphi is a real-valued positive type function :

$$m_{\varphi}(\lambda(g)) = \varphi(g)\lambda(g).$$

Then

 $\mathcal{N} = \Gamma_{-1}(\ell_T^2) \rtimes_{\alpha} G$ where $t_{g,h} = \varphi(g^{-1}h)$ and the action α is such that $\alpha_g(\omega(h)) = \omega(gh)$.

 ${\cal N}$ is equipped with its canonical trace and

 $J_1: N \to \mathcal{N}$, is the canonical embedding

 $J_0: \mathcal{N} \to \mathcal{N}, \quad \text{is defined by} \quad J_0(a) = \omega(\delta_e)J_1(a)\omega(\delta_e).$