Unit equations having few solutions

Fields Institute, October 22, 2008

Noriko HIRATA-Kohno

§1 Unit equations

Let K be a number field with $[K:\mathbb{Q}]=d$.

Let S be a finite set of places of K containing all infinite places.

Put $s = \#S < \infty$.

S-integers $\mathfrak{O}_S := \{x \in K \,:\, v(x) \geq 0 \ for \ \forall v \notin S\}$

S-units $U_S := \{x \in K : v(x) = 0 \text{ for } \forall v \notin S\}.$

For $\alpha_1, \alpha_2 \in K^* := K - \{0\}$, consider the Unit equation

$$\alpha_1 x + \alpha_2 y = 1 \quad \text{in} \quad x, y \in U_S \tag{1}$$

Theorem [Siegel, Mahler, Lang]

The Unit equation

$$lpha_1 x + lpha_2 y = 1 \quad ext{in} \quad x,y \in U_S$$

has only finitely many solutions.

Proven by means of Diophantine approximation of

Thue-Siegel-Roth-Mahler in 2 variables' case and

by the Subspace Theorem of W. M. Schmidt in n variables' case.

Theorem [Roth's theorem]

satisfying the inequality

Let α be an algebraic number of degree $d\ (\geq 2).$ For any $\varepsilon>0,$ there are only finitely many rational numbers $\frac{p}{q}$ with q>0

$$\left| lpha - rac{p}{q}
ight| < rac{1}{q^{2+arepsilon}}$$

It is not easy to precise more; namely

Conjecture [Still Open]

Let α be an algebraic number of degree ≥ 3 .

Then there exists a constant $\kappa_0(\alpha) > 0$

depending on α with the following property;

if $\kappa > \kappa_0(\alpha)$,

then the rational numbers $\frac{p}{q}$ with q>0 satisfying

$$\left| lpha - rac{p}{q}
ight| < rac{1}{q^2 (\log q)^\kappa}$$

are only finitely many.

Definition For $X\in\mathbb{P}^N(\overline{\mathbb{Q}})$ and a number field K such that

 $(x_0,\ldots,x_N)\in\mathbb{P}^N(K),$ define a logarithmic height of X by

$$h(X) := rac{1}{[K:\mathbb{Q}]} \sum_v n_v \log(\max\{|x_0|_v,\ldots,|x_N|_v\})$$

with $n_v = [K_v \,:\, \mathbb{Q}_v]$ the local degree .

Definition

For $\alpha \in \overline{\mathbb{Q}}$ and $K = \mathbb{Q}(\alpha)$, define $h(\alpha) := h(1:a)$.

For $X=(x_1,\cdots,x_N)\in \mathbb{A}^N(\overline{\mathbb{Q}}),$

define an exponential height of X by $H(X) := \exp(h(1, x_1, \dots, x_N))$.

Let $L_i(X) = a_{i1}X_1 + \cdots + a_{iN}X_N$ (i = 1, ..., N) be N linearly independent linear forms with coefficients in K. Let $\delta > 0$.

Consider the inequality

$$|L_1(x)\cdots L_N(x)| \leq H(x)^{-\delta} \ \ ext{in} \ x \in \mathbb{Z}^N.$$

Theorem [The Subspace Theorem, W. M. Schmidt]

The set of the solutions $x \in \mathbb{Z}^N$ to the above inequality is contained in a finite union $T_1 \cup \cdots \cup T_t$ of proper linear subspaces T_1, \cdots, T_t of \mathbb{Q}^N .

§2 General Unit equations

It is shown the finiteness of the solutions to the Unit equations by van der Poorten-Schlickewei in 2 variables' case, and by Evertse-Schlickeweri-Schmidt, in the following general setting.

Let K a field of characteristic 0.

Let Γ be a subgroup of $(K^*)^n$ of finite rank $r < \infty$.

Namely, there are $u_1, u_2, \dots, u_r \in \Gamma$ satisfying that

for every $x \in \Gamma \subset (K^*)^n$ there exist integers

 z,z_1,\cdots,z_r such that $x^z=u_1^{z_1}\cdots u_r^{z_r}$.

For $\alpha_1, \dots, \alpha_n \in K^*$, consider the General Unit equation

$$lpha_1 x_1 + \dots + lpha_n x_n = 1 ext{ in } x := (x_1, \dots, x_n) \in \Gamma \quad ext{with } \sum_{i \in I} lpha_i x_i
eq 0$$

for every non-empty subset I of $\{1 \cdots n\}$.

We call such solutions "non-degenerate" solutions to the General Unit equation.

Otherwise we call "degenerate" solutions those with vanishing subsum $\sum_{i\in I} \alpha_i x_i = 0$.

Theorem [Evertse-Schlickeweri-Schmidt, 2002]

Consider the General Unit equation

$$lpha_1x_1+\cdots+lpha_nx_n=1 ext{ in } x=(x_1,\cdots,x_n)\in\Gamma.$$

Then the number of non-degenerate solutions is

at most
$$c(n)^{r+1}$$
 with $c(n) = \exp((6n)^{3n})$.

Different proof by G. Rémond.

An earlier estimate of Beukers-Schlickewei is better if n=2; the number of the solutions is at most $2^{8(r+2)}$. The non-degenerate solutions to the Unit equation are only finitely many, but we can also construct Unit equations having many solutions.

For example, we have a result due to Erdős, Stewart, Tijdeman, and improved one by Konyagin and Soudararajan.

Let us denote $N(\alpha_1, \dots, \alpha_n)$ the number of the non-degenerate solutions to the Unit equation $\alpha_1 x_1 + \dots + \alpha_n x_n = 1.$ Theorem [Erdős-Stewart-Tijdeman] Let $K = \mathbb{Q}$. There exist an absolute constant c > 0 and a set of places S containing rational primes of arbitrary large cardinality s with

$$N(1,1) \geq \expig(c(s/\log s)^{1/2}ig).$$

Theorem [Konyagin-Soudararajan] There exists a constant

 $\gamma < 2 - \sqrt{2}$ and a set of places S containing rational primes of arbitrary large cardinality s with

$$N(1,1) \ge \exp{\left(s^{\gamma}\right)}.$$

This means that there is no uniform upper bound which is independent of S for the number of the solutions.

We are now interested in Unit equations having few solutions:

Definition Γ -equivalence class

Let Γ be a subgroup of $(K^*)^n$ of finite rank $r < \infty$.

We say that $\alpha := (\alpha_1, \alpha_2, \dots, \alpha_n) \in (K^*)^n$ and $\beta := (\beta_1, \beta_2, \dots, \beta_n) \in (K^*)^n$ are Γ -equivalent

if there exists an element $\sigma \in \Gamma$ such that

 $\beta = \sigma \cdot \alpha$ (here the multiplication is coordinatewise).

We write $\alpha \sim \beta$ when they are Γ -equivalent.

§3 Unit equations having few solutions

Let us consider $n \geq 3$.

Instead of seeking an upper bound of the number of the non-degenerate solutions, we may consider the minimal number m such that the set of the solutions to General Unit equations may be contained in the union of m proper linear subspaces of $(K^*)^n$, outside of some finitely many Γ -equivalence classes.

Theorem [Evertse 2003]

Let $n \geq 3$. Let Γ be a subgroup of $(K^*)^n$ of finite rank.

There exists a finitely many Γ -equivalence classes C_1, \dots, C_t of tuples $(K^*)^n$ with the following property ;

For any $(\alpha_1, \dots, \alpha_n) \in (K^*)^n - (C_1 \cup \dots \cup C_t)$

the set of non-degenerate solutions to

 $\alpha_1 x_1 + \cdots + \alpha_n x_n = 1$ in $x = (x_1, \cdots, x_n) \in \Gamma$ is contained in

the union of not more than 2^n proper linear subspaces of $(K)^n$.

Theorem 1

Let us restrict n=2.

Let Γ be a subgroup of $(K^*)^2$ of finite rank r.

Consider the Unit equation

$$\alpha_1 x_1 + \alpha_2 x_2 = 1 \text{ in } x = (x_1, x_2) \in \Gamma.$$

Then the number of the solutions is at most $2 \cdot 5^{2r+3}$.

Beukers-Schlickewei: $2^{8(r+2)}$.

Theorem 2 Let n=2. Let Γ be a subgroup of $(K^*)^2$ of finite

rank r. Consider the General Unit equation

$$lpha_1x_1+lpha_2x_2=1 ext{ in } x=(x_1,x_2)\in\Gamma.$$

Then there exists a finite set $B \subset (K^*)^2$ with the following property:

For any $(\alpha_1, \alpha_2) \in (K^*)^2$ which is not Γ -equivalent to

any of $(\beta_1, \beta_2) \in B$, we have $N(\alpha_1, \alpha_2) \leq 2$

and $\#B \le \exp(50^2(r+2))$.

Tools of the refinements:

Hypergepmetric method (essentielly due to M. Bennett)

and Geometry of numbers.