## A MASS TRANSPORT APPROACH FOR THE RELATIVISTIC HEAT EQUATION

Marjolaine Puel Institut de Mathématiques de Toulouse

Joint work with R. McCann,

and ongoing collaboration with J. Bertrand

email: puel@mip.ups-tlse.fr

### The relativistic heat equation

We study the Cauchy problem for "a relativistic version" of the heat equation

$$\partial_t \rho = \operatorname{div} \left( \rho \frac{\nabla \rho}{\sqrt{\rho^2 + |\nabla \rho|^2}} \right) = \operatorname{div} \left( \rho \frac{\nabla \log \rho}{\sqrt{1 + |\nabla \log \rho|^2}} \right). \tag{1}$$

introduced to impose an upperbound for the propagation velocity. (Ref Brenier (01), Rosenau (92), Mihalas-Mihalas (84))

Assumptions  $\rho(t,x)$  with  $t \in [0,T]$  and  $x \in \Omega$ , bounded domain of  $\mathbf{R}^d$  and

$$0 < m \le \rho_0 \le M$$
 and  $\int_0^T \int_{\Omega} \rho dx dt = 1$ .

Andreu, Caselles, Mazòn (ref Non Linear Analysis and JEMS 2005)

Andreu, Caselles, Mazòn, Moll (ref Arch Ration Mech Anal 2006)

### Mass Transport Strategy

The aim of our work is to implement a different point of view following the ideas of Jordan, Kinderleherer, Otto
SIAM J.Math. Anal.(98)

---- construction of solutions of general equation of the type

$$\partial_t \rho = \operatorname{div} \left( \rho \nabla c^* (\nabla (F'(\rho))) \right)$$

F is a convex Entropy and c is a convex cost function + cond  $c^*$  is a mobility function, defined as the Legendre transform of c i.e.

$$c^*(x) = \sup_{y \in \mathbf{R}^d} x \cdot y - c(y).$$

— time discrete scheme involving a double minimization process.



#### Time discrete scheme

Let  $P(\Omega)$  be the set of probability measures on  $\Omega$ ,

$$\rho_0 \in P(\Omega)$$
 given, find  $\rho^h(t,x) \in P(\Omega)$  defined by

$$\left\{ \begin{array}{l} \rho^h(0,x)=\rho_0(x) \\ \\ \rho^h(t,x)=\rho^h_i(x) \quad \text{for } t\in ]ih; (i+1)h] \quad h \text{ being the time step} \end{array} \right.$$

where

$$\rho_i^h(x) = \operatorname{argmin}_{\rho}(\int_{\Omega} F(\rho(y)) dy + h \inf_{\gamma \in \Gamma_i^h(\rho_{i-1}^h, \rho)} \int_{\Omega \times \Omega} c(\frac{x-y}{h}) d\gamma(x,y)),$$

 $\Gamma_i^h(\rho_{i-1}^h,\rho)$  is the set of transport plans between  $\rho_{i-1}^h$  and  $\rho$ .  $\longrightarrow$  Generalisation of discrete gradient flow to general convex cost function

Ref Ambrosio Gigli Savaré Lectures in math ETH (2005), Villani Graduate studies in Math AMS (2003)

#### Previous results

• Jordan-Kinderlehrer-Otto SIAM Journ Math Anal (98)  $c(z) = \frac{|z|^2}{2}$  and  $F(\rho) = \beta^{-1}\rho\log\rho - V\rho$ , V given. — Linear Fokker Plank equation

$$\partial_t \rho = \operatorname{div} (\nabla V \rho) + \beta^{-1} \Delta \rho.$$

• Otto Preprint (96)  $c(z) = \frac{|z|^q}{q}$  and  $F(\rho) = \frac{n\rho^m}{m(m-1)}$ where  $m = n + \frac{p-2}{p-1}, \ \frac{1}{p} + \frac{1}{q} = 1, \ p \ge 2$  $\longrightarrow$  Doubly degenerate equation

$$\partial_t \rho = \operatorname{div} \left( |\nabla \rho^n|^{p-2} \nabla \rho^n \right)$$

- Agueh Adv Diff Equ (05)  $\beta |z|^q \le c(z) \le \alpha (|z|^q + 1)$  and F convex + displacement convex
- → A large set of equation

$$\partial_t \rho = \text{div} \left( \rho \nabla c^* (\nabla (F'(\rho))) \right)$$

# Cost Function and Entropy for the relativistic heat equation

The relativistic heat equation does not belong to those sets of equations since it corresponds to the cost function

$$c(z) = \begin{cases} 1 - \sqrt{1 - |z|^2} & \text{if } |z| \le 1 \\ +\infty & \text{if } |z| > 1 \end{cases}$$

and the Entropy  $F(\rho) = \rho \log \rho - \rho$ .

- ▶ This cost function is strictly convex and discontinuous  $(c(z) = \infty \text{ if } |z| > 1)$
- ▶  $\nabla c^*$  and then the velocity  $\nabla c^*(\nabla F'(\rho))$  is bounded  $\Rightarrow$  characteristic property of a relativistic phenomenum.

## General assumptions on the Cost and on the Entropy

This present work will in fact apply for any

- Cost function

$$c(z) = \begin{cases} \tilde{c}(|z|) \ge 0 & \text{if } |z| \le 1 \\ +\infty & \text{if } |z| > 1 \end{cases}$$

where  $\tilde{c}$  is strictly convex,  $C^0[0,1] \cup C^2([0,1[),$  with  $|\nabla c(z)| \to \infty$  when  $|z| \to 1$ .

- Entropy function  $F \in C^2(\mathbf{R})$  satisfying  $\frac{F(\lambda)}{\lambda} \to \infty$  when  $\lambda \to \infty$  and  $\lambda^d F(\lambda^{-d})$  is convex (displacement convexity) Ref McCann Adv Math (97).

#### Formal argument I

Step 1 Find for every time intervall [ih; (i+1)h]

- the optimal transport plan  $\gamma_i^h$ ,
- its second marginal  $\rho_i^h$
- ▶ the associated optimal map (i.e.  $\gamma_i^h = \delta(x S_i^h(y))$ ).

The existence of  $\rho_i^h$  is ensured by the double minimization process.

#### Problem 1 Definition of the map

Step 2 Derive the Euler-Lagrange equations (derivation /  $\rho$  and then  $\nabla$ )

$$\nabla(F'(\rho(y))) = \nabla c(\frac{S_i^h(y) - y}{h}) \implies \frac{S_i^h(y) - y}{h} = \nabla c^*(\nabla(F'(\rho(y))))$$

since 
$$\nabla c^*(\nabla c(z)) = z$$
.

Problem 2 supp  $\gamma_i^h \subset \{|x-y| \le h\}$  but if |x-y| = h, then  $\nabla c(\frac{x-y}{h})$  is not defined.



#### Formal argument II

Step 3 Obtain an approximate time discrete equation for  $\rho^h$  by  $\times \rho \nabla \phi$ 

$$\frac{\rho_i^h - \rho_{i-1}^h}{h} = \operatorname{div}(\rho_i^h \nabla c^*(\nabla(F'(\rho_i^h))) + \operatorname{Correction terms in O(h)}.$$

Step 4 It remains to pass to the limit when the time step h goes to zero

$$\implies \partial_t \rho = \operatorname{div}(\rho \nabla c^*(\nabla (F'(\rho))).$$

Problem 3 We want to use a monotonicity argument (Minty-Browder)

to identify the limit but lack of regularity of  $\rho$ .



## Construction of the optimal map (drop the h)

The classical result of Gangbo McCann CRAS (95) can not be applied here. Indeed it is based on the Kantorovich duality:

$$\int_{\Omega \times \Omega} c(x-y) d\gamma_{opt}(x,y) = \int_{\Omega} \phi(x) d\rho_0(x) + \int_{\Omega} \psi(y) d\rho_1(y)$$

where  $\phi$  is the *c*-transform of  $\psi$ , i.e.

$$\phi(x) = \inf_{y} (c(x - y) - \psi(y))$$

When  $c \in C^{1,\alpha}$ ,  $\psi$  is Lipschitz and then differentiable which means that when  $(x,y) \in \operatorname{supp} \gamma_{opt}$ , we have

$$\nabla c(x-y) = -\nabla \psi(y)$$
 and then  $x = y + \nabla c^*(-\nabla \psi(y))$ 

In our case,  $\psi$  is no more Lipschitz + problem when |x - y| = 1.

The strategy consists in introducing a mollified problem

### The mollified problem

We introduce the Yoshida mollification of the convex function c (Ref Brezis Operateur maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert (73)) by a Convexification of  $c^*$ 

$$c^{\epsilon*}(x) = c^*(x) + \frac{\epsilon}{2}|x|^2$$

 $\implies$  Mollification of c

$$c^{\epsilon}(x) = \inf_{z \in \mathbf{R}^d} (c(x-z) + \frac{|z|^2}{2\varepsilon})$$

and we define  $\gamma_i^{\epsilon h}$ , the optimal transport plan between  $\rho_{i-1}^{\ h}$  and  $\rho_i^{\epsilon h}$  obtained when the minimization involves the mollified cost function  $c^{\epsilon}$ 

## Kantorovich duality and optimal map for the mollified problem

$$\int_{\Omega\times\Omega}c^{\epsilon}(x-y)d\gamma^{\epsilon}(x,y)=\int_{\Omega}\phi^{\epsilon}(x)d\rho_{0}(x)+\int_{\Omega}\psi^{\epsilon}(y)d\rho^{\epsilon}(y)$$

where the potential function satisfies

$$\phi^{\epsilon}(x) = \inf_{y \in \mathbf{R}^d} (c^{\epsilon}(x - y) - \psi^{\epsilon}(y)).$$

Gangbo-McCann ⇒ existence of a map

$$S^{\epsilon}(y) = y + \nabla c^{\epsilon*}(-\nabla \psi^{\epsilon}(y))$$

Agueh  $\Rightarrow$  Euler-Lagrange eq.

$$S^{\epsilon}(y) = y + \nabla c^{\epsilon *}(\nabla (F'(\rho^{\epsilon}(y))))$$

that leads to 
$$\psi^{\epsilon}(y) = -F'(\rho^{\epsilon}(y))$$



## Limiting process to obtain the optimal map I

1- the limit 
$$\lim_{\epsilon \to 0} \gamma_i^{\epsilon} = \gamma_i$$
 and  $\sup_{\epsilon \to 0} \gamma_i \subset \{(x,y) \text{ such that } |x-y| < 1\} \cup Z_i \text{ where } \gamma_i(Z_i) = 0.$ 

2-  $\rho^{\epsilon}(y)$  is bounded in  $W^{1,1}(\Omega)$  since the displacement convexity of the Entropy leads to a Fisher information—entropy inequality

$$\int \rho^{\epsilon} \nabla c^{\epsilon*} (\nabla (F'(\rho^{\epsilon}))) \cdot \nabla (F'(\rho^{\epsilon})) dy \leq \int [F(\rho_0(y)) - F(\rho^{\epsilon}(y))] dy.$$

Then  $\rho_i^{\epsilon} \to_{\epsilon \to 0} \rho_i \in BV(\Omega)$  weak in  $BV(\Omega)$ , strong in  $L^1(\Omega)$ 

 $\Longrightarrow \rho_i$  is approximatively differentiable

 $\implies$  avoid a.e. the undetermination of the map.

## Limiting process to obtain the optimal map II

#### 3- Kantorovich duality

$$\begin{split} &\int_{\Omega\times\Omega} c(x-y)d\gamma_i(x,y) = \int_{\Omega} \phi_i(x)d\rho_{i-1}(x) + \int_{\Omega} \psi_i(y)d\rho_i(y). \\ &\text{with } \phi_i(x) = \inf_{y\in\overline{\Omega}} (c(x-y)-\psi_i(y)) \text{ and } \psi_i(y)) = -F'(\rho_i) \\ &\Longrightarrow \qquad \text{Optimal map} \qquad + \qquad \text{Euler-Lagrange equation} \\ &S_i(y) = y + \nabla c^*(-\nabla\psi_i(y)) = y + \nabla c^*(\nabla(F'(\rho_i(y)))). \end{split}$$

## Monge-Kantotovich problem for the relativistic cost

New collaboration with J. Bertrand. Let  $\mu_0$  and  $\mu_1$  be two given compact supported probabilities. We look for

$$\inf_{\pi \in \Gamma(\mu_0,\mu_1)} \int_{\Omega_0 \times \Omega_1} c(x-y) d\pi(x,y).$$

If  $\mu_0$  and  $\mu_1$  are too far from each other, the cost will be infinite. If they are too close (e.g.  $\operatorname{dist}(\Omega_0, \Omega_1)$  too small), we don't see the difficulties of the cost.

+ extension of the problem to the restriction of a strictly convex function on the bowl.

## Parametrized problem

We introduce a parametrized problem

$$C(t) = \inf_{\pi \in \Gamma(\mu_0, \mu_1)} \int_{\Omega_0 \times \Omega_1} c(\frac{x-y}{t}) d\pi(x, y).$$

#### Properties of C

- 1. C is decreasing.
- 2. There exists a critical T such that  $t < T \rightarrow C(t) = \infty$  and  $t > T \rightarrow C(t) < \infty$
- 3.  $c(T) < \infty$

## Ideas for the construction of a map for t > T

#### We construct a Kantorovich potential

- ightharpoonup finite,  $\Omega$  covered by a finite family of tubular neighborhood
- ▶ a.e. differentiable on  $p_x(Supp(\pi_{opt}) \cap \{|x-y| < t\})$  as extension of a sequence of Lipschitz functions
- + use argument of Champion, De Pascale, Juutinen, SIAM J. Math. Anal. 2008 to prove
  - ▶  $p_x(\{|x-y| < t\} \cap Supp(\pi_{opt})) \cap p_x(\{|x-y| = t\} \cap Supp(\pi_{opt})) = \emptyset.$
  - ▶  $\pi_{opt|(p_x(\{|x-y|=t\}\cap Supp(\pi_{opt}))\times\Omega)}$  is supported by the graph of an application

## Particularity of the relativistic cost

The function C(t) is a.e. differentiable +

$$\forall \delta > 0 \quad C'(t) > K \nabla c (1 - \delta) \pi_{opt}^t (|x - y| \ge (1 - \delta)t)$$

$$\rightarrow$$
 for almost every  $t > T$ ,  $\pi_{opt}^t(|x - y| = t) = 0$ .

## From the time discrete equation to the continuous equation

By multiplying the Euler-Lagrange equation by  $\rho_i^h \nabla \phi$ , we obtain the approximate time discrete equation

$$\frac{\rho_i^h - \rho_{i-1}^h}{h} = \operatorname{div}(\rho_i^h \nabla c^*(\nabla(F'(\rho_i^h))) + \operatorname{Correction terms in O(h)}.$$

and when h goes to zero, we obtain the continuous equation

$$\partial_t \rho = \operatorname{div} (\rho A)$$

where  $\rho$  is the  $L^1([0,T]\times\Omega)$  limit of  $\rho^h$  and A is the w\* $L^\infty(\Omega)$  limit of  $\nabla c^*(\nabla(F'(\rho^h))$ .

It remains to identify the limit A



#### Identification of the limit A

We use a monotonicity argument (Minty-Browder) by proving for any test functions  $\zeta \geq 0$  and  $\xi$  ( Ref Evans Weak convergence method for nonlinear partial differential equations)

$$\int \xi(\rho A - \rho \nabla c^*(\zeta))(\nabla(F'(\rho)) - \zeta) \ge 0 \quad (*)$$

which implies that  $A = \nabla c^*(\nabla(F'(\rho)))$ Indeed, it implies

$$(\rho A - \rho \nabla c^*(\zeta))(\nabla (F'(\rho)) - \zeta) \ge 0$$

and then by taking  $\zeta = \nabla(F'(\rho)) + \gamma \chi$ ,  $\gamma \nearrow 0$  and  $\gamma \searrow 0$ , we deduce the result.

To obtain equation (\*), we pass to the limit when  $h \rightarrow 0$  in

$$\int \xi(\rho^h \nabla c^*(\nabla(F'(\rho^h))) - \rho^h \nabla c^*(\zeta))(\nabla(F'(\rho^h)) - \zeta) \ge 0$$

obtained thanks to the monotonicity of  $\nabla c^*$ .

### Limiting process in the Minty Browder argument

Instead of passing to the limit in the non linear term we write the Fisher information- Entropy inequality

$$\int \rho^h \nabla c^* (\nabla (F'(\rho^h))) \cdot \nabla (F'(\rho^h)) \leq \int [F(\rho_0(y)) - F(\rho^h(T,y))] dy,$$

the strong convergence of  $\rho^h$  leads to

$$\int [F(\rho_0(y)) - F(\rho^h(T,y))] dy \longrightarrow \int [F(\rho_0(y)) - F(\rho(T,y))] dy = -$$

and finally, we obtain by using the equation that,

$$\int \rho^h \nabla c^* (\nabla (F'(\rho^h))) \cdot \nabla (F'(\rho^h)) \leq \int \rho A \nabla (F'(\rho))$$

Problem define all the terms when  $\rho \in L^1_w([0, T], BV(\Omega))$ .

Need regularity for  $\partial_t \rho$  to multiply the equation by  $\nabla(F'(\rho))$  + Def of functions of BV functions and  $L^1$  lower-semicontinuity Ref De Cicco, Fusco, Verde J. Convex Anal. (05). Ref Andreu, Caselles, Mazon Arch Rat Mech (05).

#### Main Result

#### Theorem

(i) Support of the optimal measure: Finite speed of propagation

$$\operatorname{supp}\, \gamma_i^h \subset \{(x,y) \quad | \quad \frac{|x-y|}{h} < 1\} \cup Z_i^h \text{ with } \gamma_i^h(Z_i^h) = 0.$$

(ii) Euler-Lagrange equation: a discrete scheme

$$\gamma_i^h(x,y) = \delta(x - S_i^h(y)) \text{ with } S_i^h(y) = y + h\nabla c^*(\nabla(F'(\rho_i^h(y)))).$$

- (iii) Convergence of the measure  $\rho^h$ . Up to a subsequence,  $\rho^h \longrightarrow \overline{\rho}$  in  $L^1([0,T] \times \Omega)$  and  $\overline{\rho} \in W = L^\infty([0,T] \times \Omega) \cap L^1_w([0,T],BV(\Omega))$ .
- (iv) **Limiting equation**  $\overline{\rho}$  is a solution to

$$\partial_t \overline{\rho} = \operatorname{div}(\overline{\rho} \nabla c^*(\nabla(F'(\overline{\rho})))).$$