Making the Long Code shorter, with applications to the Unique Games Conjecture

Boaz Barak – MSR New England

Joint work with
Parikshit Gopalan (MSR-Silicon Valley)
Johan Håstad (KTH)
Raghu Meka (IAS)
Prasad Raghavendra (GA Tech)
David Steurer (MSR New England)

Unique Games Conjecture [Khot'02]

- Hardness of certain constraint satisfaction problem.
- If true has many implications

Fastest algorithm for UG: $\exp(n^{\epsilon})$ time. [Arora-B-Steurer'10]

Huge Gap! (even bigger than it seems)

Best evidence for hardness: $n^{\log\log\delta}n$... $n^{\log\delta}n$ lower bounds in certain computational models.

[Khot-Vishnoi'04,Khot-Saket'09,Raghavendra-Steurer'09] (capturing the ABS algorithm [B-Raghavendra-Steurer'11,Guruswami-Sinop'11])

Source of quantitative weakness: Inefficiency of long-code/noise graph.

Unique Games Conjecture [Khot'02]

- Hardness of certain constraint satisfaction problem.
- If true has many implications

Fastest algorithm for UG: $\exp(n^{\epsilon})$ time. [Arora-B-Steurer'10]

Best evidence for hardness: $n^{\log\log^{\delta}n}$... $n^{\log^{\delta}n}$ lower bounds in certain computational models.

[Khot-Vishnoi'04,Khot-Saket'09,Raghavendra-Steurer'09] (capturing the ABS algorithm [B-Raghavendra-Steurer'11,Guruswami-Sinop'11])

Source of quantitative weakness: Inefficiency of long-code/noise graph. Fastest algorithm for UG: $\exp(n^{\epsilon})$ time.

Best evidence for hardness: $n^{\log\log\delta}n$... $n^{\log\delta}n$ restricted model lower bounds Source of quantitative weakness: Inefficiency of long-code/noise graph.

Our main result: New exponentially more efficient replacement to long-code/noise-graph gadget.

Some Applications:

• Existence of small-set expander with $\exp(\log^{\epsilon} n)$ eigenvalues close to 1.

Demostrates ABS algorithm can take $\exp(poly^*(n))$ time.

 Alphabet reduction / inner PCP gadget* for unique games with quasipolynomial blowup in alphabet size.

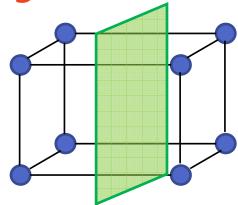
Improves on exponential blowup of long-code gadget.

• Max Cut integrality gap for $poly^*(\log n) \dots poly^*(n)$ rounds of semi definite hierarchies.

Exponential improvement over prior bounds.

Talk Overview

- 1. Review of long-code + noisy Boolean cube
- Shorter long-code via "succinct cube":
 - Connection to locally testable codes.
 - Construction via Reed-Muller code.
- 3. Small set expander with many large eigenvalues.
- 4. Sketch of other applications:
 - "Majority is Stablest" for succinct cubes.
 - Sketch of integrality gap construction.
- 5. Conclusions and open problems



Noisy Cube Graph $T_{1-\epsilon}$: Vertices $\{0,1\}^N$, Edges: $x \sim y$ if $\Delta(x,y) = \epsilon N$

Affinity of subset of vertices $f: \{0,1\}^N \to \{0,1\}$ is

$$\varphi(f) = \Pr_{\mathbf{x} \in f, y \sim x} [y \in f] = \langle f, T_{1-\epsilon} f \rangle / \| f \|^2 = \mathbb{E}_{x \sim y} [f(x)f(y)] / \mu(f)$$

Balanced sets w/ max affinity (= $1 - \epsilon$) are dictatorships: $f(x) = x_i$

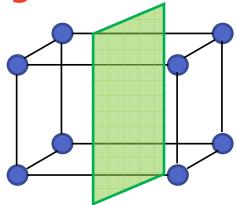
Every set with large affinity is "close" to dictatorship:

f in span of e-vectors of value $\geq (1-2\epsilon)^d$ iff f is degree-d poly.

Stronger results known

[Kahn-Kalai-Linial'88, Friedgut'98, Bourgain'99, Mossel-O'Donnel-Oleszkiewicz'05],...

Corollary: $T_{1-\epsilon}$ is a small set expander: $\mu(f) \to 0 \Rightarrow \varphi(f) \to 0$



Noisy Cube Graph $T_{1-\epsilon}$: Vertices $\{0,1\}^N$, Edges: $x \sim y$ if $\Delta(x,y) = \epsilon N$

Affinity of subset of vertices $f: \{0,1\}^N \to \{0,1\}$ is

$$\varphi(f) = \langle f, T_{1-\epsilon}f \rangle / \|f\|^2 = \mathbb{E}_{x \sim y}[f(x)f(y)] / \mu(f) = \Pr_{\mathbf{x} \in f, y \sim x}[y \in f]$$

Balanced sets w/ max affinity (= $1 - \epsilon$) are dictatorships: $f(x) = x_i$

Every set with large affinity is "close" to dictatorship:

f in span of e-vectors of value $\geq (1-2\epsilon)^d$ iff f is degree-d poly.

Stronger results known

[Kahn-Kalai-Linial'88, Friedgut'98, Bourgain'99, Mossel-O'Donnel-Oleszkiewicz'05],...

Corollary: $T_{1-\epsilon}$ is a small set expander: $\mu(f) \to 0 \Rightarrow \varphi(f) \to 0$

Noisy cube: Graph $T_{1-\epsilon}$ Vertices $\{0,1\}^N$, edges: $x \sim y$ if $\Delta(x,y) = \epsilon N$

Affinity of
$$f: \{0,1\}^N \to \{0,1\}$$
 is $\varphi(f) = \Pr_{x \in f, y \sim x}[y \in f]$

Max affinity balanced sets are dictatorships: $f(x) = x_i$

Any large affinity set is "close" to dictatorships, small sets have small affinity.

Use of Noisy Cube in unique-games applications:

- Replace variable taking values in [N] with 2^N vertices of the noisy cube.
- Intention: encode $i \in [N]$ with the dictatorship $f(x) = x_i$
- Place edges according to the noisy cube.
- Any f with high value can be decoded to (list of) dictatorship.

Quantitative issue: 2^N blowup.

Noisy cube: Graph $T_{1-\epsilon}$ Vertices $\{0,1\}^N$, edges: $x \sim y$ if $\Delta(x,y) = \epsilon N$

Affinity of
$$f: \{0,1\}^N \to \{0,1\}$$
 is $\varphi(f) = \Pr_{x \in f, y \sim x}[y \in f]$

Max affinity balanced sets are dictatorships: $f(x) = x_i$

Any large affinity set is "close" to dictatorships, small sets have small affinity.

Use of Noisy Cube in unique-games applications:

- Replace variable taking values in [N] with 2^N vertices of the noisy cube.
- Intention: encode $i \in [N]$ with the dictatorship $f(x) = x_i$
- Place edges according to the noisy cube.
- Any f with high value can be decoded to (list of) dictatorship.

Quantitative issue: 2^N blowup.

Noisy cube: Graph $T_{1-\epsilon}$ Vertices $\{0,1\}^N$, edges: $x \sim y$ if $\Delta(x,y) = \epsilon N$

Affinity of
$$f: \{0,1\}^N \to \{0,1\}$$
 is $\varphi(f) = \Pr_{x \in f, y \sim x}[y \in f]$

Max affinity balanced sets are dictatorships: $f(x) = (1 - x_i)/2$

Any large affinity set is "close" to dictatorships, small sets have small affinity.

Quantitative issue: 2^N blowup.

Another manifestation: Noisy cube is small set expander with log|V| eigenvalues close to 1.

[Arora-B-Steurer'10]: Every small set expander has at most $|V|^\epsilon$ eigenvalues larger than $1-\epsilon^3$

 $\Rightarrow \exp(n^{\epsilon})$ -time algorithm for small set expansion (and unique games)

Question: Is there small set expander with $\log^{\omega(1)} |V|$ large e-vals?

This work: Construction with $\exp(\log |V|^{\delta})$ large e-vals.

Succinct Cubes

Goal: Construct small set expander with $\log^{\omega(1)}|V|$ large e-vals

Idea: Find induced subgraph G of the cube with $K \ll 2^N$ vertices s.t.

- 1) N dictatorships are still large eigenvectors
- 2) Subgraph still small set expander.

More generally: preserve properties of cube

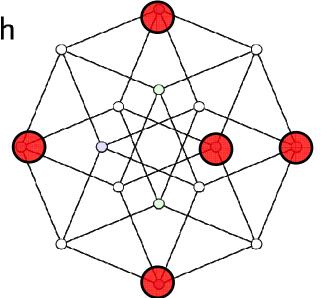
Natural approach: Take random subset.

Complete Failure: Subgraph empty when $K \ll 2^{\epsilon N}$

We chose vertices from linear code $C \subseteq GF(2)^N$.

Need "bad code": low rate $(\dim(C) \ll N)$, low distance $(dist(C) \leq \epsilon N)$

But not too bad...



(i)
$$D := dist(C^{\perp}) = \omega(1)$$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test $y \in GF(2)^N$:

- 1) Choose random $w \in C$ s.t. $|w| \le \epsilon N$
- 2) Accept iff $\langle y, w \rangle = 0$

i.e.,
$$dist(y, C^{\perp}) > D/100 \Rightarrow \Pr[y \ accepted] = \frac{1}{2} + o(1)$$

Then $T_{1-\epsilon} \upharpoonright C$ is small set expander w/ N e-vals $\geq 1 - 2\epsilon$

Instantiation: N = 2^n , C = Reed-Muller code of degree d, $\epsilon = 2^{-d}$ C^\perp = Reed-Muller code of degree n-d-1 $dist(C^\perp) = 2^d$, tester works via [Batthacharya-Kopparty-Schoenbeck-Sudan-Zuckerman'10]

(i)
$$D := dist(C^{\perp}) = \omega(1)$$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test $y \in GF(2)^N$:

- 1) Choose random $w \in C$ s.t. $|w| \leq \epsilon N$
- 2) Accept iff (x, w) = 0

i.e., $dist(y, C^{\perp})$ Vertices: degree d poly's over $GF(2)^n$

Then $T_{1-\epsilon} \upharpoonright C$ is: Edges: $p \sim q$ if $p - q = f_1 f_2 \cdots f_d$

Where f_1, \dots, f_d affine functions.

Instantiation: N = 2^n , C = Reed-Muller code of degree d, $\epsilon = 2^{-d}$ C^{\perp} = Reed-Muller code of degree n-d-1 $dist(C^{\perp}) = 2^d$, tester works via [Batthacharya-Kopparty-Schoenbeck-Sudan-Zuckerman'10]

Resulting graph has $\sim 2^{n^d}$ vertices and 2^n large e-vals.

(i)
$$D := dist(C^{\perp}) = \omega(1)$$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test $y \in GF(2)^N$:

- 1) Choose random $w \in C$ s.t. $|w| \le \epsilon N$
- 2) Accept iff $\langle y, w \rangle = 0$

i.e.,
$$dist(y, C^{\perp}) > D/100 \Rightarrow \Pr[y \ accepted] = \frac{1}{2} + o(1)$$

Then $T_{1-\epsilon} \upharpoonright C$ is small set expander w/ N e-vals $\geq 1-2\epsilon$

Proof outline:

- 1) Dictatorships survive and correspond to large e-vecs of $T_{1-\epsilon} \upharpoonright C$
- 2) All large e-vecs of $T_{1-\epsilon} \upharpoonright C$ correspond to low degree polynomials.
- 3) By 2), many properties of hypercube are preserved, including small set expansion.

(i)
$$D := dist(C^{\perp}) = \omega(1)$$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test $y \in GF(2)^N$:

- 1) Choose random $w \in C$ s.t. $|w| \le \epsilon N$
- 2) Accept iff $\langle y, w \rangle = 0$

i.e.,
$$dist(y, C^{\perp}) > D/100 \Rightarrow \Pr[y \ accepted] = \frac{1}{2} + o(1)$$

Then $T_{1-\epsilon} \upharpoonright C$ is small set expander w/ N e-vals $\geq 1-2\epsilon$

Proof outline:

- 1) Dictatorships survive and correspond to large e-vecs of $T_{1-\epsilon} \upharpoonright C$
- 2) All large e-vecs of $T_{1-\epsilon} \upharpoonright C$ correspond to low degree polynomials.
- 3) By 2), many properties of hypercube are preserved, including small set expansion.

1) Dictatorships survive and correspond to large e-vecs of $T_{1-\epsilon} \upharpoonright C$

Lemma: If $f: GF(2)^N \to \mathbb{R}$ is e-vec of $T_{1-\epsilon}$, $C \subseteq GF(2)^N$ subspace, then $f \upharpoonright C$ is e-vec of $T_{1-\epsilon} \upharpoonright C$.

Proof: Both $T_{1-\epsilon}$, $T_{1-\epsilon} \upharpoonright C$ are Cayley graphs: $\ln T_{1-\epsilon}$, $x \sim y$ iff $x \oplus y \in B_{\epsilon}$ $\ln T_{1-\epsilon} \upharpoonright C$, $x \sim y$ iff $x \oplus y \in B_{\epsilon} \cap C$ f e-vec of $T_{1-\epsilon} \Rightarrow f$ is character $(f(x \oplus y) = f(x)f(y)) \Rightarrow f \upharpoonright C$ is character.

Note: Every character f has form $f(x) = -1^{\langle x,y \rangle}$ for some $y \in GF(2)^N$. The corresponding e-val is $\mathbb{E}_{w \in B_{\epsilon} \cap C}[f(w)] = \mathbb{E}_{w \in B_{\epsilon} \cap C}[-1^{\langle w,y \rangle}]$

Lemma: If f is dictatorship character $f(x) = -1^{x_i}$ then e-val of $f \upharpoonright C$ in $T_{1-\epsilon} \upharpoonright C$ is $\geq 1-2\epsilon$

Proof: e-val is $\mathbb{E}_{w \in B_{\epsilon} \cap C}[-1^{w_i}]$, use $|w| \leq \epsilon N$, assume *i* typical.

Corollary: $T_{1-\epsilon} \upharpoonright C$ has $\geq N$ eigenvalues of value $\geq 1 - 2\epsilon$.

(i)
$$D := dist(C^{\perp}) = \omega(1)$$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test $y \in GF(2)^N$:

- 1) Choose random $w \in C$ s.t. $|w| \le \epsilon N$
- 2) Accept iff $\langle y, w \rangle = 0$

i.e.,
$$dist(y, C^{\perp}) > D/100 \Rightarrow \Pr[y \ accepted] = \frac{1}{2} + o(1)$$

Then $T_{1-\epsilon} \upharpoonright C$ is small set expander w/ N e-vals $\geq 1-2\epsilon$

Proof outline:

- $\sqrt[4]{1}$) Dictatorships survive and correspond to large e-vecs of $T_{1-\epsilon} \upharpoonright C$
 - 2) All large e-vecs of $T_{1-\epsilon} \upharpoonright C$ correspond to low degree polynomials.
 - 3) By 2), many properties of hypercube are preserved, including small set expansion.

(i)
$$D := dist(C^{\perp}) = \omega(1)$$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test $y \in GF(2)^N$:

- 1) Choose random $w \in C$ s.t. $|w| \le \epsilon N$
- 2) Accept iff $\langle y, w \rangle = 0$

i.e.,
$$dist(y, C^{\perp}) > D/100 \Rightarrow \Pr[y \ accepted] = \frac{1}{2} + o(1)$$

Then $T_{1-\epsilon} \upharpoonright C$ is small set expander w/ N e-vals $\geq 1 - 2\epsilon$

Proof outline:

- 1) Dictatorships survive and correspond to large e-vecs of $T_{1-\epsilon} \upharpoonright C$
- 2) All large e-vecs of $T_{1-\epsilon} \upharpoonright C$ correspond to low degree polynomials.
- 3) By 2), many properties of hypercube are preserved, including small set expansion.

2) All large e-vecs of $T_{1-\epsilon} \upharpoonright C$ correspond to low degree polynomials.

Recall: (i) Every character
$$f$$
 has form $f_y(x) = -1^{\langle x,y \rangle}$ where $y \in GF(2)^N$.
The corresponding e-val is $\mathbb{E}_{w \in B_{\epsilon} \cap C}[f(w)] = \mathbb{E}_{w \in B_{\epsilon} \cap C}[-1^{\langle w,y \rangle}]$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test
$$y \in GF(2)^N$$
:

- 1) Choose random $w \in C$ s.t. $|w| \le \epsilon N$
- 2) Accept iff $\langle y, w \rangle = 0$

i.e.,
$$dist(y, C^{\perp}) > dist(C^{\perp})/100 \Rightarrow \Pr[y \ accepted] = \frac{1}{2} + o(1)$$

Note:
$$f_y \upharpoonright C \equiv f_{y'} \upharpoonright C$$
 iff $y \oplus y' \in C^{\perp}$

Corollary: f_y is equivalent to degree ℓ character (i.e., $f_{y'}$ with $|y'| \le \ell$) iff $dist(y, C^{\perp}) \le \ell$

Corollary: \forall character f of $T_{1-\epsilon} \upharpoonright C$. If f's e-val $\geq \Omega(1)$ then $f = f_y \upharpoonright C$ for some $|y| \leq dist(C^{\perp})/100$.

2) All large e-vecs of $T_{1-\epsilon} \upharpoonright C$ correspond to low degree polynomials.

Recall: (i) Every character f has form $f_y(x) = -1^{\langle x,y \rangle}$ where $y \in GF(2)^N$. The corresponding e-val is $\mathbb{E}_{w \in B_\epsilon \cap C}[f(w)] = \mathbb{E}_{w \in B_\epsilon \cap C}[-1^{\langle w,y \rangle}]$

(ii) C^{\perp} is $\in \mathbb{N}$ -query locally testable via canonical tester:

Test $y \in GF(2)^N$:

- 1) Choose random $w \in C$ s.t. $|w| \le \epsilon N$
- 2) Accept iff $\langle y, w \rangle = 0$

i.e.,
$$dist(y, C^{\perp}) > dist(C^{\perp})/100 \Rightarrow \Pr[y \ accepted] = o(1)$$

Note: $f_y \upharpoonright C \equiv f_{y'} \upharpoonright C$ iff $y \oplus y' \in C^{\perp}$

Corollary: f_y is equivalent to degree ℓ character (i.e., $f_{y'}$ with $|y'| \le \ell$) iff $dist(y, C^{\perp}) \le \ell$

Corollary: \forall character f of $T_{1-\epsilon} \upharpoonright C$. If f's e-val $\geq \Omega(1)$ then $f = f_y \upharpoonright C$ for some $|y| \leq dist(C^{\perp})/100$.

2) All large e-vecs of $T_{1-\epsilon} \upharpoonright C$ correspond to low degree polynomials.

 \forall character f of $T_{1-\epsilon} \upharpoonright C$. If f's e-val $\geq \Omega(1)$ then $f = f_y \upharpoonright C$ for some $|y| \leq dist(C^{\perp})/100$.

3) By 2), many properties of hypercube are preserved, including small set expansion.

Crucial observation: Random variable $x \in_R C$ is D-1-wise independent.

Corollary: For every poly f of degree < D, $\mathbb{E}_{x \in C}[f(x)] = \mathbb{E}_{x \in GF(2)^N}[f(x)]$

Small set expansion of noisy cube is proven by showing that if f is degree- ℓ polynomial, then $\mathbb{E}_{x \in GF(2)^N}[f^4(x)] \leq 9^{\ell} \mathbb{E}_{x \in GF(2)^N}[f^2(x)]^2$.

[Nash'??,Bonami'68]

Thus proof immediately carries over to our case.

Our main result: New exponentially more efficient replacement to long-code/noise-graph gadget.

Some Applications:

• Existence of small-set expander with $\exp(\log^{\epsilon} n)$ eigenvalues close to 1.

Demostrates ABS algorithm can take $exp(poly^*(n))$ time.

 Alphabet reduction / inner PCP gadget* for unique games with quasipolynomial blowup in alphabet size.

Improves on exponential blowup of long-code gadget.

• Max Cut integrality gap for $poly^*(\log n) \dots poly^*(n)$ rounds of semi definite hierarchies.

Exponential improvement over prior bounds.

Invariance Principle and Alphabet Reduction

Invariance Principle: [Mossel-O'Donnel-Oleszkiewicz'05]

 $f: \{\pm 1\}^N \to \mathbb{R}$ low-degree polynomial of low max influence, then

$$f(X) \sim f(Y)$$

X:Uniform on $\{\pm 1\}^N$ Y:N independent Gaussians.

Crucial tool in several applications of noisy cube via "Majority is Stablest" [Khot-Kindler-Mossel-O'Donnel'04]

We want: Prove still holds when X is D-wise independent.

Unfortunately, proof doesn't involve just finite moments.

What we achieve: Holds when X is a random Reed-Muller codeword.

Main tool: PRG for polynomial threshold functions. [Meka-Zuckerman'10]

Corollary: $2^{poly(n)}$ -size gadget reducing unique-games over $GF(2)^n$ into max-cut / sparsest cut (/ smaller alphabet UG*)

Integrality gaps for Unique Games, Max Cut

- Take our graph treat as label-extended graph for unique games instance.
- Results in integrality gap with completeness $\sim 1 1/\log |V|$ (compare with $1 1/\log \log |V|$ of prior works)
- Compose with alphabet-reduction gadget to get Max-Cut instance, analyze via [Raghavendra-Steurer'09]
- n vertex Max-Cut instance resisting:
 - $poly^*(log n)$ rounds in SDP+SA hierarchy (compare to poly(log log n))
 - $poly^*(n) = \exp(\exp(poly(\log\log n)))$ in local embedability hierarchy (compare to $poly(\log n)$)

Open Problem: Prove the UGC

(Maybe with $n^{\log n}$ or $2^{\sqrt{n}}$ time reduction)

Our gadget yields a candidate "inner PCP".

Need to find the right outer PCP...

Q: Is there a subexponential algorithm for smooth label cover?

Open Problem: Refute the UGC

(Maybe with $2^{2\sqrt{\log n}}$ or $n^{\log n}$ time algorithm)

Seems we need to use a different algorithm..

..or maybe just stronger SDP hierarchies?

Q: Is there Max-Cut/UG instance requiring $\omega(1)$ rounds for weak SDP hierarchies, but O(1) rounds for Lasserre?