Ergodic theorems along trees
In the classical pointwise ergodic theorem for a probability measure preserving (pmp) transformation $T$, one takes averages of a given integrable function over the intervals $\{x, T(x), T^2(x), \hdots, T^n(x)\}$ in the forward orbit of the point $x$. In joint work with Jenna Zomback, we prove a "backward" ergodic theorem for a countable-to-one pmp $T$, where the averages are taken over subtrees of the graph of $T$ that are rooted at $x$ and lie behind $x$ (in the direction of $T^{-1}$). Surprisingly, this theorem yields (forward) ergodic theorems for countable groups, in particular, one for pmp actions of free groups of finite rank where the averages are taken along subtrees of the standard Cayley graph rooted at the identity. For free group actions, this strengthens the best known result in this vein due to Bufetov (2000).
Bio: I am an Assistant Professor in the Mathematics & Statistics Department at McGill University. I am a member of the Analysis lab at Centre de Recherches Mathématiques and of the Geometric Group Theory research group at McGill. Together with Marcin Sabok, I run the Descriptive Dynamics and Combinatorics seminar.