Microstructure-informed in silico modeling of the human brain
Brain tissue is not only one of the most important but also the arguably most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational models based on nonlinear continuum mechanics can help understand the basic processes in the brain, e.g., during development, injury, and disease, and facilitate early diagnosis and treatment of neurological disorders.
By closely integrating biomechanical experiments on human brain tissue, microstructural analyses, continuum mechanics modeling, and finite element simulations, we develop computational models that capture both biological processes on the cellular scale and macroscopic loading and pathologies. We introduce the cell density as an additional field controlling the local tissue stiffness and brain growth during development. We demonstrate that our models are capable of capturing the evolution of cell density and cortical folding in the developing brain as well as regional variations in tissue properties in the adult brain. In the future, those models can provide deeper insights into the behavior of the human brain under physiological and pathological conditions, and simulate progression of injury and disease.
Short Bio:
Silvia Budday, is currently an Assistant Professor and Independent Junior Research Group Leader in the Emmy Noether-Programme (“BRAINIACS – BRAIn mechaNIcs ACross Scales”) at the Institute of Applied Mechanics, Friedrich-Alexander University. She finished her PhD in December 2017 “summa cum laude” and was awarded the GACM Best PhD Award (German Association for Computational Mechanics) and the ECCOMAS Best PhD Award for one of the two best PhD theses in the field of Computational Methods in Applied Sciences and Engineering in Europe in 2017. Amongst numerous awards, she received the Bertha Benz-Prize from the Daimler und Benz Stiftung as a woman visionary pioneer in engineering, and in 2018, received an Emerging Talents Initiative (ETI) Grant, as well as an Emerging Fields Initiative (EFI) Grant from the FAU. In 2021, she was awarded the Heinz Maier-Leibnitz-Prize by the DFG and BMBF and the Richard-von-Mises-Prize by the International Association of Applied Mathematics and Mechanics (GAMM). Her work focuses on experimental and computational soft tissue biomechanics with special emphasis on brain mechanics and the relationship between brain structure and function.