Mixing and Descriptive Set Theory
Speaker:
Robert Kaufman, University of Illinois Urbana-Champaign
Date and Time:
Thursday, October 10, 2002 - 9:30am to 10:30am
Location:
Fields Institute, Room 230
Abstract:
Let X be a compact metric space and H(X) the metric space of continuous selfmaps of X. The subset H(X,m) is then defined as follows: A transformation T belongs to H(X,m) provided there is a T-invariant probability measue mu such that T is mixing for the measure mu.
Example (S.Siboni) For a certain space X, H(m) in't closed.
Theorem 1 H(m) is always an analytic set.
Theorem 2 For a certain space Y, H(m) is a complete analytic
subset of H.
The space Y is immense, but further effort yields an example in which X is a Cantor set and Y has dimenion 1.