Multi-Component Nonlinear Waves in Optics and Atomic Condensates: Theory, Computations and Experiments (plenary lecture)
Motivated by work in nonlinear optics, as well as more recently in Bose-Einstein condensate mixtures, we will explore a series of nonlinear states that arise in such systems. We will start from a single structure, the so-called dark-bright solitary wave, and then expand our considerations to multiple such waves, their spectral properties, nonlinear interactions and experimental observations. A twist will be to consider the dark solitons of the one component as effective potentials that will trap the bright waves of the second component, an approach that will also prove useful in characterizing the bifurcations and instabilities of the system. Beating so-called dark-dark soliton variants of such states will also be touched upon. Generalizations of all these notions in higher dimensions and, so-called, vortex-bright solitons will also be offered and challenges for future work will be discussed.